Use an appropriate Pythagorean identity to find the indicated value for an acute angle \( \theta \). Write your answer as a simplified fraction denominators if necessary. Given \( \csc \theta=\frac{29}{20} \), find the exact value of \( \cot \theta \).
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find \( \cot \theta \) given \( \csc \theta = \frac{29}{20} \), we first recall that \( \csc \theta = \frac{1}{\sin \theta} \). This allows us to determine \( \sin \theta \): \[ \sin \theta = \frac{20}{29}. \] Next, we can find \( \cos \theta \) using the Pythagorean identity \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ \sin^2 \theta = \left(\frac{20}{29}\right)^2 = \frac{400}{841}. \] Now substituting into the identity: \[ \frac{400}{841} + \cos^2 \theta = 1, \] \[ \cos^2 \theta = 1 - \frac{400}{841} = \frac{841 - 400}{841} = \frac{441}{841}. \] Taking the square root gives: \[ \cos \theta = \frac{21}{29}. \] Finally, \( \cot \theta \) is the ratio of \( \cos \theta \) to \( \sin \theta \): \[ \cot \theta = \frac{\cos \theta}{\sin \theta} = \frac{\frac{21}{29}}{\frac{20}{29}} = \frac{21}{20}. \] Thus, the exact value of \( \cot \theta \) is \( \frac{21}{20} \).