b) \( \frac{x}{4}+5=\frac{x}{2}+\frac{x}{8}-1 \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To solve the equation, let's first eliminate the fractions by finding a common denominator, which is 8. We can multiply through by 8 to simplify: \[ 8 \left( \frac{x}{4} \right) + 8 \cdot 5 = 8 \left( \frac{x}{2} \right) + 8 \left( \frac{x}{8} \right) - 8 \] This simplifies to: \[ 2x + 40 = 4x + x - 8 \] Now combine like terms on the right side: \[ 2x + 40 = 5x - 8 \] Next, isolate \(x\) by moving all terms involving \(x\) to one side and constant terms to the other side: \[ 40 + 8 = 5x - 2x \] \[ 48 = 3x \] To find \(x\), divide both sides by 3: \[ x = 16 \] So the solution to the equation is \( x = 16 \).