Sequency is represented \( \sum_{p=0}^{k}\left(\frac{1}{3} p+1 / 6\right)=201 / 6 \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To enjoy this mathematical adventure, let's first simplify our expression! We can rewrite the sum: \[ \sum_{p=0}^{k} \left(\frac{1}{3} p + \frac{1}{6}\right) = \sum_{p=0}^{k} \frac{1}{3} p + \sum_{p=0}^{k} \frac{1}{6} \] The first term is a classic arithmetic series which sums up to \(\frac{1}{3} \cdot \frac{k(k+1)}{2}\), and the second term is simply \(\frac{k+1}{6}\). By combining these, we can find \(k\) when equated to \(\frac{201}{6}\). If we calculate the total for given values, be cautious with fractions! Common mistakes arise when adding or equating both parts; ensure the coefficients and sums are handled correctly. Happy calculating!