Pregunta
upstudy study bank question image url

9. Mickey D's In a study of the accuracy of fast food drive-through orders, McDonald's had 33 orders that were not accurate among 362 orders observed (based on data from \( Q S R \) magazine). Use a 0.05 significance level to test the claim that the rate of inaccurate orders is equal to \( 10 \% \). Does the accuracy rate appear to be acceptable?

Ask by Li Peterson. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

There is not enough evidence to conclude that the rate of inaccurate McDonald's drive-through orders differs from 10%. Therefore, the accuracy rate appears to be acceptable.

Solución

To determine whether the rate of inaccurate McDonald's drive-through orders is acceptably low, we'll perform a hypothesis test for a population proportion. Here's a step-by-step analysis: ### **1. Define the Hypotheses** - **Null Hypothesis (\( H_0 \))**: The rate of inaccurate orders is equal to \( 10\% \). \[ H_0: p = 0.10 \] - **Alternative Hypothesis (\( H_a \))**: The rate of inaccurate orders is not equal to \( 10\% \). \[ H_a: p \neq 0.10 \] *This is a two-tailed test since we're checking for any significant difference from \( 10\% \).* ### **2. Collect and Summarize the Data** - **Sample Size (\( n \))**: 362 orders - **Number of Inaccurate Orders (\( X \))**: 33 - **Sample Proportion (\( \hat{p} \))**: \[ \hat{p} = \frac{X}{n} = \frac{33}{362} \approx 0.0912 \text{ or } 9.12\% \] ### **3. Calculate the Test Statistic** We'll use the **z-test for proportions**. \[ z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \] Where: - \( p_0 = 0.10 \) (the hypothesized proportion) Plugging in the values: \[ z = \frac{0.0912 - 0.10}{\sqrt{\frac{0.10 \times 0.90}{362}}} = \frac{-0.0088}{\sqrt{\frac{0.09}{362}}} \approx \frac{-0.0088}{0.0158} \approx -0.559 \] ### **4. Determine the p-Value** Using the standard normal distribution: - **Find \( P(Z > |z|) \)** when \( z = -0.559 \). From standard normal tables or a calculator: \[ P(Z > 0.559) \approx 0.2877 \] Since it's a two-tailed test: \[ \text{p-value} = 2 \times 0.2877 \approx 0.5754 \] ### **5. Make a Decision** - **Significance Level (\( \alpha \))**: 0.05 - **Compare p-value with \( \alpha \)**: \[ 0.5754 > 0.05 \] - **Decision**: **Fail to reject** the null hypothesis. ### **6. Conclusion** There is **insufficient evidence** at the \( 0.05 \) significance level to conclude that the rate of inaccurate McDonald's drive-through orders differs from \( 10\% \). **Interpretation for Acceptability**: Since the observed inaccurate rate is approximately \( 9.12\% \), which is not significantly different from the claimed \( 10\% \), the accuracy rate **appears to be acceptable** based on this study. ### **Summary** - **Test Used**: Two-tailed z-test for population proportion. - **Test Statistic**: \( z \approx -0.559 \) - **p-Value**: \( \approx 0.5754 \) - **Conclusion**: Fail to reject \( H_0 \); the accuracy rate is acceptable.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To test the claim, we start by setting up our hypotheses: - Null Hypothesis (\( H_0 \)): The rate of inaccurate orders is \( 10\% \) (or \( p = 0.10 \)). - Alternative Hypothesis (\( H_a \)): The rate of inaccurate orders is not \( 10\% \) (or \( p \neq 0.10 \)). The sample proportion of inaccurate orders from the observed data is calculated as: \[ \hat{p} = \frac{33}{362} \approx 0.0912 \] Next, we can use a z-test for proportions. The test statistic is calculated using the formula: \[ z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \] where \( p_0 = 0.10 \) and \( n = 362 \). Plugging in the numbers: \[ z = \frac{0.0912 - 0.10}{\sqrt{\frac{0.10(0.90)}{362}}} \approx \frac{-0.0088}{0.025} \approx -0.35 \] Now, we look for the critical z-value for a two-tailed test at a 0.05 significance level, which is approximately ±1.96. Since our calculated z-value (-0.35) lies between -1.96 and 1.96, we fail to reject the null hypothesis. Based on this test, there is not enough evidence to claim that the rate of inaccurate orders is significantly different from \( 10\% \). Thus, it appears that the accuracy rate could be considered acceptable, as it does not significantly deviate from the \( 10\% \) standard.

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad