If \( (4-x) ; 3 \) and \( \sqrt{2 x+5} \) are the first three ter if an anthmetic Serquence a). Determine the value of \( x \).
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
In an arithmetic sequence, the difference between consecutive terms is constant. Therefore, we can set up the equation based on the first three terms \( (4 - x), 3, \) and \( \sqrt{2x + 5} \): The common difference, \( d \), can be calculated using: \[ d = 3 - (4 - x) = 3 - 4 + x = x - 1 \] \[ d = \sqrt{2x + 5} - 3 \] Setting these equal gives us: \[ x - 1 = \sqrt{2x + 5} - 3 \] Rearranging this gives: \[ \sqrt{2x + 5} = x + 2 \] Now, squaring both sides, we get: \[ 2x + 5 = (x + 2)^2 \] \[ 2x + 5 = x^2 + 4x + 4 \] Rearranging the equation: \[ 0 = x^2 + 4x + 4 - 2x - 5 \] \[ 0 = x^2 + 2x - 1 \] Now, applying the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} \] \[ x = \frac{-2 \pm \sqrt{4 + 4}}{2} = \frac{-2 \pm \sqrt{8}}{2} = \frac{-2 \pm 2\sqrt{2}}{2} = -1 \pm \sqrt{2} \] Thus, the values of \( x \) are \( -1 + \sqrt{2} \) or \( -1 - \sqrt{2} \).