Letermine the following indefinite integral. Check your work by differentiation. \[ \int \frac{5}{9 r^{2}+9} d r \]
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To solve the integral \[ \int \frac{5}{9 r^{2}+9} \, dr, \] first, we can factor out the constants from the denominator: \[ \int \frac{5}{9(r^{2}+1)} \, dr = \frac{5}{9} \int \frac{1}{r^{2}+1} \, dr. \] We know that \[ \int \frac{1}{r^{2}+1} \, dr = \tan^{-1}(r) + C, \] where \( C \) is the constant of integration. So, we have: \[ \frac{5}{9} \int \frac{1}{r^{2}+1} \, dr = \frac{5}{9} \tan^{-1}(r) + C. \] Thus, the final result of the integral is: \[ \int \frac{5}{9 r^{2}+9} \, dr = \frac{5}{9} \tan^{-1}(r) + C. \] To check our work, we can differentiate the result: \[ \frac{d}{dr} \left(\frac{5}{9} \tan^{-1}(r) + C\right) = \frac{5}{9} \cdot \frac{1}{1+r^{2}} = \frac{5}{9(r^{2}+1)}. \] Now, multiplying the denominator by 9, gives us: \[ \frac{5}{9 \cdot (r^{2}+1)} = \frac{5}{9 r^{2}+9}, \] which confirms our solution!