Pregunta
upstudy study bank question image url

Use the imaginary number \( i \) to rewrite the expression below as a complex number. Simplify all radicals. \[ \sqrt{-9} \]

Ask by Macdonald Hilton. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\[ \sqrt{-9} = 3i \]

Solución

To rewrite the expression \(\sqrt{-9}\) as a complex number using the imaginary unit \(i\), follow these steps: 1. **Understand the Imaginary Unit**: The imaginary unit \(i\) is defined as: \[ i = \sqrt{-1} \] 2. **Express \(\sqrt{-9}\) Using \(i\)**: \[ \sqrt{-9} = \sqrt{9 \times (-1)} = \sqrt{9} \times \sqrt{-1} = 3 \times i \] 3. **Simplify the Expression**: \[ \sqrt{-9} = 3i \] So, the simplified complex number form of \(\sqrt{-9}\) is: \[ 3i \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To rewrite \( \sqrt{-9} \) using the imaginary number \( i \), we start by recognizing that \( \sqrt{-1} = i \). Therefore, we can express the square root of a negative number as follows: \[ \sqrt{-9} = \sqrt{9} \cdot \sqrt{-1} = 3i \] Thus, the expression simplifies to the complex number \( 3i \). Now for some fun historical context: The concept of imaginary numbers dates back to the 16th century when mathematicians were trying to solve equations that didn't have real solutions, particularly in cases like the square root of negative numbers. It wasn't until the 18th century that mathematicians like Euler began to formalize and embrace these "imaginary" numbers, leading to the rich field of complex analysis we study today! And what about some practical advice? When dealing with complex numbers, always remember to separate the real part from the imaginary part, especially when you're adding or subtracting different complex numbers. A common mistake is to forget that when multiplying, you should distribute carefully considering that \( i^2 = -1 \). This often trips people up when simplifying products of complex numbers!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad