Pregunta
Multiply. Write your answer in simplest form. \[ \sqrt{7} \cdot \sqrt{6} \]
Ask by Chan Murphy. in the United States
Jan 24,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\[
\sqrt{42}
\]
Solución
To multiply the square roots and simplify the expression:
\[
\sqrt{7} \cdot \sqrt{6}
\]
You can use the property of square roots that states:
\[
\sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b}
\]
Applying this property:
\[
\sqrt{7} \cdot \sqrt{6} = \sqrt{7 \times 6} = \sqrt{42}
\]
The number 42 can be factored into \(2 \times 3 \times 7\), none of which are perfect squares. Therefore, \(\sqrt{42}\) is already in its simplest form.
**Final Answer:**
\[
\sqrt{42}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
To solve \( \sqrt{7} \cdot \sqrt{6} \), you can use the property of square roots that states \( \sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b} \). So, you would combine the square roots like this: \[ \sqrt{7} \cdot \sqrt{6} = \sqrt{7 \cdot 6} = \sqrt{42} \] The simplest form of the product is \( \sqrt{42} \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium