Pregunta
upstudy study bank question image url

Write an expression for the arithmetic sequence whose 2 nd term is 8 and whose 5 th term is 17 \( a_{n}=17-3 n \) \( a_{n}=8+3 n \) \( a_{n}=3 n+2 \) \( a_{n}=3 n+5 \)

Ask by Cole Floyd. in Japan
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The arithmetic sequence is \( a_{n} = 3n + 2 \).

Solución

To find the arithmetic sequence where the 2nd term is 8 and the 5th term is 17, let's use the general formula for an arithmetic sequence: \[ a_n = a + (n-1)d \] where: - \( a \) is the first term, - \( d \) is the common difference, - \( n \) is the term number. **Given:** 1. The 2nd term (\( a_2 \)) is 8: \[ a + d = 8 \] 2. The 5th term (\( a_5 \)) is 17: \[ a + 4d = 17 \] **Steps to Solve:** 1. **Subtract the first equation from the second to eliminate \( a \):** \[ (a + 4d) - (a + d) = 17 - 8 \\ 3d = 9 \\ d = 3 \] 2. **Find the first term (\( a \)) using \( d = 3 \) in the first equation:** \[ a + 3 = 8 \\ a = 5 \] 3. **Write the general formula for the sequence:** \[ a_n = a + (n-1)d \\ a_n = 5 + (n-1) \times 3 \\ a_n = 5 + 3n - 3 \\ a_n = 3n + 2 \] **Therefore, the arithmetic sequence is:** \[ a_{n} = 3n + 2 \] **Answer:** \( a_{n}=3 n+2 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the expression for the arithmetic sequence, we first need to determine the common difference. Since we know the 2nd term \( a_2 \) is 8 and the 5th term \( a_5 \) is 17, we can set up the equations. The common difference \( d \) can be calculated as: 1. \( a_5 = a_2 + 3d \implies 17 = 8 + 3d \) 2. Solving for \( d \) gives \( d = 3 \). Now, the first term \( a_1 \) can be found using the 2nd term: - \( a_2 = a_1 + d \) \(\implies 8 = a_1 + 3\) \(\implies a_1 = 5 \). Now that we have the first term \( a_1 = 5 \) and the common difference \( d = 3 \), the general term formula for the arithmetic sequence can be written as: \[ a_n = a_1 + (n-1)d \\ a_n = 5 + (n-1)3 \\ a_n = 3n + 2. \] The correct expression is \( a_{n}=3 n+2 \). So, the right answer is \( a_{n}=3 n+2 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad