\( \begin{array}{ll}\text { a) } 7 x \cdot 3 & \text { b) } 8 y \cdot 6 \\ \text { c) } 10 \cdot 3 x & \text { d) } 12 \cdot 2 y \\ \text { e) } 9 x \cdot 3 y & \text { f) } x \cdot 2 y \cdot 4 z\end{array} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
When you multiply numbers and variables, you're essentially building a small empire of math! For instance, in \( 7x \cdot 3 \), you're adding together 7 times the magic number \( x \) with 3, resulting in \( 21x \). Keep hitting those multiplications in the other expressions, and you'll quickly see those numbers multiply and dance together! Now, here's a fun tidbit: when multiplying variables like \( xy \) and \( z \), remember that the order doesn’t matter. So \( 2xy \cdot 4z \) is just as joyful as \( 4z \cdot 2xy \), ultimately resulting in \( 8xyz \). It's a whimsical world of commutative property!