Rationalize the denominator and simplify. \[ \frac{\sqrt{7}}{14-\sqrt{7}} \]
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To rationalize the denominator of \(\frac{\sqrt{7}}{14-\sqrt{7}}\), we multiply the numerator and the denominator by the conjugate of the denominator, which is \(14+\sqrt{7}\): \[ \frac{\sqrt{7}}{14-\sqrt{7}} \cdot \frac{14+\sqrt{7}}{14+\sqrt{7}} = \frac{\sqrt{7}(14+\sqrt{7})}{(14-\sqrt{7})(14+\sqrt{7})} \] The denominator simplifies using the difference of squares: \[ (14 - \sqrt{7})(14 + \sqrt{7}) = 14^2 - (\sqrt{7})^2 = 196 - 7 = 189 \] Now simplifying the numerator: \[ \sqrt{7}(14+\sqrt{7}) = 14\sqrt{7} + 7 \] Putting it all together, we have: \[ \frac{14\sqrt{7} + 7}{189} \] Now we can simplify the fraction: \[ \frac{7 + 14\sqrt{7}}{189} = \frac{1}{27} + \frac{14\sqrt{7}}{189} \] Thus, the final simplified expression is: \[ \frac{14\sqrt{7} + 7}{189} \]