Pregunta
upstudy study bank question image url

Given the function \( f(x)=\int_{-1}^{x}\left(t^{4}-12 t^{3}\right) d t \) determine all \( x \)-values, if any, for which \( f \) has a relative maximum.

Ask by Chavez Chadwick. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

There are no \( x \)-values where \( f \) has a relative maximum.

Solución

To determine the \( x \)-values for which the function \( f(x) \) has a relative maximum, we will follow these steps: 1. **Find the derivative \( f'(x) \)** using the Fundamental Theorem of Calculus. 2. **Set the derivative equal to zero** to find critical points. 3. **Use the second derivative test** to determine if these critical points correspond to relative maxima. ### Step 1: Find the derivative \( f'(x) \) According to the Fundamental Theorem of Calculus, the derivative of the integral function is given by: \[ f'(x) = \frac{d}{dx} \left( \int_{-1}^{x} (t^{4} - 12t^{3}) dt \right) = x^{4} - 12x^{3} \] ### Step 2: Set the derivative equal to zero Now, we will set \( f'(x) \) equal to zero to find the critical points: \[ x^{4} - 12x^{3} = 0 \] Factoring out \( x^{3} \): \[ x^{3}(x - 12) = 0 \] This gives us the critical points: \[ x^{3} = 0 \quad \Rightarrow \quad x = 0 \] \[ x - 12 = 0 \quad \Rightarrow \quad x = 12 \] ### Step 3: Use the second derivative test Next, we need to find the second derivative \( f''(x) \): \[ f''(x) = \frac{d}{dx}(f'(x)) = \frac{d}{dx}(x^{4} - 12x^{3}) = 4x^{3} - 36x^{2} \] Now we will evaluate \( f''(x) \) at the critical points \( x = 0 \) and \( x = 12 \): 1. **At \( x = 0 \)**: \[ f''(0) = 4(0)^{3} - 36(0)^{2} = 0 \] Since \( f''(0) = 0 \), the second derivative test is inconclusive at this point. 2. **At \( x = 12 \)**: \[ f''(12) = 4(12)^{3} - 36(12)^{2} \] Calculating \( f''(12) \): \[ = 4(1728) - 36(144) = 6912 - 5184 = 1728 \] Since \( f''(12) > 0 \), this indicates that \( f(x) \) has a relative minimum at \( x = 12 \). ### Conclusion The only critical point we found was \( x = 0 \), which was inconclusive, and \( x = 12 \), which is a relative minimum. Therefore, there are no \( x \)-values for which \( f \) has a relative maximum. Thus, the final answer is: **There are no \( x \)-values for which \( f \) has a relative maximum.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine where the function \( f(x) \) has a relative maximum, we first compute the derivative of \( f(x) \) using the Fundamental Theorem of Calculus: \[ f'(x) = x^4 - 12x^3 \] Next, we set the derivative equal to zero to find critical points: \[ x^4 - 12x^3 = 0 \] Factoring out \( x^3 \): \[ x^3 (x - 12) = 0 \] This gives us potential critical points at \( x = 0 \) and \( x = 12 \). To determine if these critical points correspond to a relative maximum, we can analyze the sign of the derivative \( f'(x) \) around these points. 1. For \( x < 0 \), choose \( x = -1 \): \[ f'(-1) = (-1)^4 - 12(-1)^3 = 1 + 12 = 13 > 0 \] (Increasing) 2. For \( 0 < x < 12 \), choose \( x = 1 \): \[ f'(1) = 1^4 - 12(1)^3 = 1 - 12 = -11 < 0 \] (Decreasing) 3. For \( x > 12 \), choose \( x = 13 \): \[ f'(13) = 13^4 - 12(13)^3 = 28561 - 21952 = 6609 > 0 \] (Increasing) From this analysis, we can conclude: - \( f'(x) \) changes from positive to negative at \( x = 0 \) (maximum). - \( f'(x) \) changes from negative to positive at \( x = 12 \) (minimum). Thus, the function \( f(x) \) has a relative maximum at \( x = 0 \).

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad