Pregunta
upstudy study bank question image url

A landscape architect planned a flower garden in the shape of a parallelogram. If the base and height are multiplied by \( \frac{1}{2} \) to create a new parallelogram, what is the new area? Round to the nearest unit, if necessary.

Ask by Edwards Hobbs. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The new area is one fourth of the original area.

Solución

To determine the new area of the parallelogram after scaling both the base and height by \( \frac{1}{2} \), let's break it down step by step. ### Original Area The area \( A \) of a parallelogram is calculated using the formula: \[ A = \text{base} \times \text{height} \quad \text{or} \quad A = b \times h \] ### Scaling the Base and Height If both the base \( b \) and the height \( h \) are multiplied by \( \frac{1}{2} \), their new values become: \[ \text{New base} = \frac{1}{2}b \] \[ \text{New height} = \frac{1}{2}h \] ### New Area Calculation The new area \( A' \) of the parallelogram with the scaled dimensions is: \[ A' = \left( \frac{1}{2}b \right) \times \left( \frac{1}{2}h \right) = \frac{1}{4} (b \times h) = \frac{1}{4}A \] ### Conclusion The new area is **one fourth** of the original area. **Example:** - **Original Area**: Suppose the original area was \( 80 \) square units. - **New Area**: \( \frac{1}{4} \times 80 = 20 \) square units. Since no specific numerical values were provided in your question, the general answer is: **The new area is one fourth of the original area.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

The area of a parallelogram is calculated using the formula: Area = base × height. If both the base and height are multiplied by \( \frac{1}{2} \), the new area can be calculated by substituting the values into the formula. New Area = \( \left(\frac{1}{2} \times \text{base}\right) \times \left(\frac{1}{2} \times \text{height}\right) \) = \( \frac{1}{4} \times \text{base} \times \text{height} \) = \( \frac{1}{4} \times \text{Area}_{\text{original}} \). So, the new area is one-fourth of the original area. If the original area is known, just divide it by 4 to find the new area. If the original area is not provided, you can express the new area in terms of the original area. Let’s say the original area was, for example, 100 square units; the new area would be 100 ÷ 4 = 25 square units. Round to the nearest unit when necessary.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad