Pregunta
upstudy study bank question image url

(f) Two very large numbers, number A and number B , are decomposed into prime numbers as follows: number \( \mathrm{A}=2^{1000} \times 3^{100} \times 5^{20} \times 7^{3} \) number \( \mathrm{B}=2^{2000} \times 3^{50} \times 5^{30} \times 11 \) (1) Write down the HCF of these numbers, as a product of prime factors. (2) Write down the LCM of these numbers, as a product of prime factors.

Ask by Paul Norris. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

1. HCF: \( 2^{1000} \times 3^{50} \times 5^{20} \) 2. LCM: \( 2^{2000} \times 3^{100} \times 5^{30} \times 7^{3} \times 11 \)

Solución

Let's analyze the given numbers \( \mathrm{A} \) and \( \mathrm{B} \) to determine their Highest Common Factor (HCF) and Least Common Multiple (LCM). \[ \begin{align*} \mathrm{A} &= 2^{1000} \times 3^{100} \times 5^{20} \times 7^{3} \\ \mathrm{B} &= 2^{2000} \times 3^{50} \times 5^{30} \times 11 \end{align*} \] ### (1) Highest Common Factor (HCF) The HCF is found by taking the minimum exponent for each common prime factor present in both numbers. **Common Prime Factors:** 2, 3, 5 \[ \begin{align*} \text{HCF}(\mathrm{A}, \mathrm{B}) &= 2^{\min(1000, 2000)} \times 3^{\min(100, 50)} \times 5^{\min(20, 30)} \\ &= 2^{1000} \times 3^{50} \times 5^{20} \end{align*} \] ### (2) Least Common Multiple (LCM) The LCM is determined by taking the maximum exponent for each prime factor present in either number. **All Prime Factors:** 2, 3, 5, 7, 11 \[ \begin{align*} \text{LCM}(\mathrm{A}, \mathrm{B}) &= 2^{\max(1000, 2000)} \times 3^{\max(100, 50)} \times 5^{\max(20, 30)} \times 7^{\max(3, 0)} \times 11^{\max(0, 1)} \\ &= 2^{2000} \times 3^{100} \times 5^{30} \times 7^{3} \times 11 \end{align*} \] **Final Answers:** 1. **HCF**: \( 2^{1000} \times 3^{50} \times 5^{20} \) 2. **LCM**: \( 2^{2000} \times 3^{100} \times 5^{30} \times 7^{3} \times 11 \) Answer: 1. HCF = 2¹⁰⁰⁰ × 3⁵⁰ × 5²⁰ 2. LCM = 2²⁰⁰⁰ × 3¹⁰⁰ × 5³⁰ × 7³ × 11

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the HCF (Highest Common Factor) and LCM (Lowest Common Multiple) of the two numbers \( A \) and \( B \), we begin by examining their prime factorizations: Number \( A = 2^{1000} \times 3^{100} \times 5^{20} \times 7^{3} \) Number \( B = 2^{2000} \times 3^{50} \times 5^{30} \times 11^{1} \) (1) To find the HCF, we take the lowest power of each prime factor present in both numbers: - For \( 2 \): min(1000, 2000) = 1000 - For \( 3 \): min(100, 50) = 50 - For \( 5 \): min(20, 30) = 20 - For \( 7 \): not present in \( B = 0\) - For \( 11 \): not present in \( A = 0\) Thus, the HCF of numbers \( A \) and \( B \) is: \[ \text{HCF} = 2^{1000} \times 3^{50} \times 5^{20} \] (2) To find the LCM, we take the highest power of each prime factor present in either number: - For \( 2 \): max(1000, 2000) = 2000 - For \( 3 \): max(100, 50) = 100 - For \( 5 \): max(20, 30) = 30 - For \( 7 \): max(3, 0) = 3 - For \( 11 \): max(0, 1) = 1 Thus, the LCM of numbers \( A \) and \( B \) is: \[ \text{LCM} = 2^{2000} \times 3^{100} \times 5^{30} \times 7^{3} \times 11^{1} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad