Responder
Solutions:
- **Problem b:** \( x = \frac{3}{\sqrt[3]{4}} \) or \( x = 3 \cdot 4^{-\frac{1}{3}} \)
- **Problem c:** \( x = 2 \)
- **Problem d:**
- First equation: \( x = 3 \)
- Second equation: \( x \approx 1.903 \)
Solución
Sure, let's solve each of the given equations step by step.
---
### **Problem b**
\[
4x^{3} = 27
\]
**Solution:**
1. **Isolate \( x^3 \):**
\[
x^{3} = \frac{27}{4}
\]
2. **Take the cube root of both sides:**
\[
x = \sqrt[3]{\frac{27}{4}} = \frac{\sqrt[3]{27}}{\sqrt[3]{4}} = \frac{3}{\sqrt[3]{4}}
\]
Alternatively, you can write:
\[
x = 3 \cdot 4^{-\frac{1}{3}}
\]
---
### **Problem c**
\[
9x^{3} = 72
\]
**Solution:**
1. **Isolate \( x^3 \):**
\[
x^{3} = \frac{72}{9} = 8
\]
2. **Take the cube root of both sides:**
\[
x = \sqrt[3]{8} = 2
\]
---
### **Problem d**
This problem appears to include two separate equations:
1. \(\frac{1}{3}x^{5} = 81\)
2. \(2x^{3} - 4 = 2x + 6\)
Let's solve each one individually.
---
#### **Equation 1:**
\[
\frac{1}{3}x^{5} = 81
\]
**Solution:**
1. **Multiply both sides by 3 to isolate \( x^5 \):**
\[
x^{5} = 81 \times 3 = 243
\]
2. **Take the fifth root of both sides:**
\[
x = \sqrt[5]{243}
\]
Since \( 243 = 3^5 \):
\[
x = 3
\]
---
#### **Equation 2:**
\[
2x^{3} - 4 = 2x + 6
\]
**Solution:**
1. **Rearrange the equation to set it to zero:**
\[
2x^{3} - 2x - 10 = 0
\]
2. **Simplify by dividing the entire equation by 2:**
\[
x^{3} - x - 5 = 0
\]
3. **Solve for \( x \) using numerical methods (since it's a cubic equation without easily factorable roots):**
- **Initial Guess:** Let’s try \( x = 2 \):
\[
f(2) = 2^3 - 2 - 5 = 8 - 2 - 5 = 1 \quad (\text{Too high})
\]
- **Next Guess:** Try \( x = 1.9 \):
\[
f(1.9) = 1.9^3 - 1.9 - 5 \approx 6.859 - 1.9 - 5 = -0.041
\]
- **Refinement:** Using methods like Newton-Raphson, we find:
\[
x \approx 1.903
\]
**Thus, the approximate real solution is:**
\[
x \approx 1.903
\]
---
### **Summary of Solutions**
- **Problem b:** \( x = \dfrac{3}{\sqrt[3]{4}} \) or \( x = 3 \cdot 4^{-\frac{1}{3}} \)
- **Problem c:** \( x = 2 \)
- **Problem d:**
- First equation: \( x = 3 \)
- Second equation: \( x \approx 1.903 \)
If you need further clarification or assistance with any of these problems, feel free to ask!
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución