Pregunta
Part 2 of 2
My score:
pts (70.59%)
Save
Let
be the region bounded by
, and
. Use the shell method to find the volume of the solid generated when
is revolved about the line
.
Set up the integral that gives the volume of the solid using the shell method. Use increasing limits of integration. Select the correct choice below and fill in the answer boxes to complete your choice.
(Type exact answers.)
A.
B.
The volume is
(Type an exact answer.)
My score:
Save
(Type exact answers.)
A.
B.
Ask by Owen Nunez. in the United States
Mar 29,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The volume of the solid is
.
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Como
The Deep Dive
To find the volume of the solid generated by revolving the region
around the line
using the shell method, we first express
in terms of
.
We see that from
, we can express
as
. The shell method formulates the volume as the integral of the circumference of a cylindrical shell multiplied by the height of the shell. The height of the shell is given by
, and the radius is
since we are revolving around
.
Thus, the correct integral setup will be:
So the choice is:
A.
A.
To find the volume, we evaluate the integral:
- Set up the integral:
- Distribute terms and integrate:
- Solving the integral separately, we can find:
Upon evaluating at the limits 0 and 1, we get a numerical value.
So the final volume answer, upon calculation, ends up being:
The volume is .
So the final volume answer, upon calculation, ends up being:
The volume is

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium