For the function \( y=2 x^{2}+7 x+3 \), at the point \( x=8 \), find the following, (a).the.slage of the tangent to the curve Enter an exact number (b) the instantaneous rate of change of the function
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find the slope of the tangent to the curve for the function \( y = 2x^2 + 7x + 3 \) at the point \( x = 8 \), we need to first compute the derivative of the function: 1. The derivative \( y' = \frac{dy}{dx} = 4x + 7 \). Now, substituting \( x = 8 \) into the derivative: \[ y'(8) = 4(8) + 7 = 32 + 7 = 39. \] Thus, the slope of the tangent to the curve at \( x = 8 \) is \( \text{39} \). For the second part, the instantaneous rate of change of the function at \( x = 8 \) is the same as the slope of the tangent, which is also \( \text{39} \).