Given functions \( g(x)=\frac{1}{\sqrt{x}} \) and \( p(x)=x^{2}-4 \), state the domains of the following functions using interval notation. Domain of \( \frac{g(x)}{p(x)}:(0,2) \cup(2, \infty) \) Domain of \( g(p(x)):(-\infty,-2) \cup(2, \infty) \) Domain of \( p(g(x)): \square \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To find the domain of \( p(g(x)) \), we first need to determine the range of \( g(x) \). The function \( g(x) = \frac{1}{\sqrt{x}} \) is defined for \( x > 0 \) and approaches infinity as \( x \) approaches 0 from the right. For larger values of \( x \), it decreases to 0. Therefore, the range of \( g(x) \) is \( (0, \infty) \). Next, we substitute this range into \( p(x) = x^2 - 4 \). The function \( p(x) \) is a parabola that opens upwards, with a vertex at \( x = 0 \). Evaluating \( p(x) \) at the endpoints of the range of \( g(x) \): - As \( x \) approaches 0, \( p(g(x)) \) approaches \( (-4) \). - As \( x \) approaches infinity, \( p(g(x)) \) approaches infinity. Since \( p(g(x)) \) only starts from \( -4 \) and continues to infinity, the domain of \( p(g(x)) \) is \((-4, \infty)\).