Pregunta
upstudy study bank question image url

9. Rachel wants to draw a triangle with sides of length 4 cm and 5 cm . What is a possible length of the third side?

Ask by Weaver Stewart. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

A possible length for the third side is between 1 cm and 9 cm.

Solución

To determine a possible length for the third side of the triangle, we can use the **Triangle Inequality Theorem**, which states that the sum of the lengths of any two sides of a triangle must be greater than the length of the remaining side. Given: - Side 1 (\(a\)) = 4 cm - Side 2 (\(b\)) = 5 cm - Side 3 (\(c\)) = ? The inequalities based on the Triangle Inequality Theorem are: 1. \(a + b > c\) \[ 4\ \text{cm} + 5\ \text{cm} > c \\ 9\ \text{cm} > c \] 2. \(a + c > b\) \[ 4\ \text{cm} + c > 5\ \text{cm} \\ c > 1\ \text{cm} \] 3. \(b + c > a\) \[ 5\ \text{cm} + c > 4\ \text{cm} \\ c > -1\ \text{cm} \quad (\text{Since length can't be negative, this condition is always true}) \] Combining these, the third side (\(c\)) must satisfy: \[ 1\ \text{cm} < c < 9\ \text{cm} \] **Conclusion:** A possible length for the third side is any length greater than 1 cm and less than 9 cm.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find a possible length for the third side of a triangle with two sides measuring 4 cm and 5 cm, we can use the triangle inequality theorem. This theorem states that the sum of the lengths of any two sides must be greater than the length of the third side. Therefore, the third side (let's call it \( x \)) must satisfy two inequalities: \( 4 + 5 > x \) and \( x + 4 > 5 \). Solving these gives us \( x < 9 \) and \( x > 1 \). Thus, a possible length for the third side is any value between 1 cm and 9 cm, like 6 cm! The triangle inequality theorem is not only useful in geometry but also has real-world applications, such as in construction and engineering. For instance, when building roof trusses or bridges, ensuring that the lengths of supports (the sides of your triangle) adhere to these principles is crucial for the structure's stability! This ensures that everything holds up against forces like wind, weight, and natural movement.

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad