Pregunta
upstudy study bank question image url

Section 6.2: Problem 2 (1 point) Find the volume formed by rotating the region enclosed by: \[ x=9 y \text { and } y^{3}=x \text { with } y \geq 0 \] about the \( y \)-axis. Volume \( =-\frac{\pi}{2} \)

Ask by Grant Boone. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The volume is \( \frac{2916\pi}{7} \).

Solución

To find the volume of the region enclosed by \( x = 9y \) and \( y^3 = x \) for \( y \geq 0 \) when rotated about the \( y \)-axis, we'll use the **washer method**. Here's a step-by-step solution: 1. **Determine the Points of Intersection:** \[ 9y = y^3 \implies y^3 - 9y = 0 \implies y(y^2 - 9) = 0 \implies y = 0 \text{ or } y = \pm 3 \] Since \( y \geq 0 \), the points of intersection are \( y = 0 \) and \( y = 3 \). 2. **Set Up the Washer Method:** The volume \( V \) is given by: \[ V = \pi \int_{0}^{3} \left[ (x_{\text{outer}})^2 - (x_{\text{inner}})^2 \right] dy \] Here: - \( x_{\text{outer}} = 9y \) - \( x_{\text{inner}} = y^3 \) 3. **Substitute and Integrate:** \[ V = \pi \int_{0}^{3} \left[ (9y)^2 - (y^3)^2 \right] dy = \pi \int_{0}^{3} \left[ 81y^2 - y^6 \right] dy \] \[ V = \pi \left[ \frac{81y^3}{3} - \frac{y^7}{7} \right]_0^3 = \pi \left[ 27y^3 - \frac{y^7}{7} \right]_0^3 \] Evaluating from 0 to 3: \[ V = \pi \left[ 27(3)^3 - \frac{(3)^7}{7} \right] = \pi \left[ 729 - \frac{2187}{7} \right] \] \[ V = \pi \left[ \frac{5103}{7} - \frac{2187}{7} \right] = \pi \left[ \frac{2916}{7} \right] = \frac{2916\pi}{7} \] 4. **Final Answer:** The volume is \( \frac{2916\pi}{7} \). **Note:** The initial answer you provided was negative, which isn't possible for a volume. Volumes are always non-negative quantities. **Final Answer:** The volume is 2916 × π divided by seven. In symbols, Volume = 2916 π ⁄ 7

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To calculate the volume formed by rotating the specified region about the \( y \)-axis, we need to find the points of intersection between the two curves \( x = 9y \) and \( y^3 = x \). Setting them equal gives us \( y^3 = 9y \), leading to \( y(y^2 - 9) = 0 \). The solutions are \( y = 0 \) and \( y = 3 \). The volume \( V \) can be calculated using the method of cylindrical shells or washers. Using the washer method, we find the volume with the integral \( V = \pi \int_{0}^{3} [(9y)^2 - (y^3)^2] \, dy \). Evaluating this integral will give you the correct volume, and it should be positive, unlike the \( V = -\frac{\pi}{2} \) you've mentioned, which seems to be an error. Remember that when dealing with volumes, a negative value typically indicates a miscalculation. Always double-check your integral setup and bounds!

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad