Pregunta
upstudy study bank question image url

What is this equation solved for \( a \) ? A \( a=\sqrt{c^{2}+b^{2}} \) B \( a=c-b \) C \( a=\frac{c^{2}-b^{2}}{2} \) D \( a=\sqrt{c^{2}-b^{2}} \) D D \( a^{2}=c^{2} \)

Ask by Gross Harris. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( a = \sqrt{c^{2} - b^{2}} \), choice D

Solución

To determine which option correctly solves the equation for \( a \), let's first understand the context. It appears you're working with the Pythagorean theorem, which relates the sides of a right-angled triangle: \[ a^2 + b^2 = c^2 \] Here, \( c \) is the hypotenuse, and \( a \) and \( b \) are the other two sides. **Objective:** Solve the equation for \( a \). **Steps to Solve for \( a \):** 1. **Start with the Pythagorean theorem:** \[ a^2 + b^2 = c^2 \] 2. **Subtract \( b^2 \) from both sides to isolate \( a^2 \):** \[ a^2 = c^2 - b^2 \] 3. **Take the square root of both sides to solve for \( a \):** \[ a = \sqrt{c^2 - b^2} \] **Matching with the Provided Options:** Let's compare this result with the given choices: - **A.** \( a = \sqrt{c^2 + b^2} \) *(Incorrect: This would apply if \( a \) were the hypotenuse.)* - **B.** \( a = c - b \) *(Incorrect: This linear equation doesn't align with the Pythagorean relationship.)* - **C.** \( a = \frac{c^2 - b^2}{2} \) *(Incorrect: The correct relationship involves a square root, not a division by 2.)* - **D.** \( a = \sqrt{c^2 - b^2} \) *(Correct: This matches our derived equation.)* **Conclusion:** **Option D** is the correct solution for \( a \): \[ a = \sqrt{c^2 - b^2} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

Did you know that the equation \( a=\sqrt{c^{2}-b^{2}} \) has roots in the Pythagorean theorem? This equation is often used in geometry to find the length of a side in a right triangle where \( c \) is the hypotenuse and \( b \) is one of the other sides. It's like a mathematical detective story, solving for the unknown side using the clues provided! In real-world applications, \( a=\sqrt{c^{2}-b^{2}} \) is crucial in fields like physics and engineering, particularly in situations involving vectors. For example, if you're calculating the resultant force when two forces act at right angles to each other, this equation helps you find the magnitude of the resultant force. It’s like using math to navigate through life's little challenges!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad