Pregunta
upstudy study bank question image url

Two containers designed to hold water are side by side, both in the shape of a cylinder. Container A has a radius of 6 feet and a height of 19 feet. Container B has a radius of 9 feet and a height of 16 feet. Container A is full of water and the water is pumped into Container B until Container A is empty. To the nearest tenth, what is the percent of Container B that is full after the pumping is complete?

Ask by Edwards Harmon. in the United States
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

After transferring all the water, approximately 52.8% of Container B is full.

Solución

To determine the percentage of Container B that is full after transferring all the water from Container A, follow these steps: 1. **Calculate the Volume of Container A:** \[ \text{Volume}_A = \pi r_A^2 h_A = \pi \times 6^2 \times 19 = 684\pi \text{ cubic feet} \] 2. **Calculate the Total Volume Capacity of Container B:** \[ \text{Volume}_B = \pi r_B^2 h_B = \pi \times 9^2 \times 16 = 1296\pi \text{ cubic feet} \] 3. **Determine the Percentage of Container B That Gets Filled:** \[ \text{Percentage} = \left( \frac{\text{Volume}_A}{\text{Volume}_B} \right) \times 100 = \left( \frac{684\pi}{1296\pi} \right) \times 100 = \left( \frac{684}{1296} \right) \times 100 \] Simplifying: \[ \frac{684}{1296} = \frac{57}{108} = \frac{19}{36} \approx 0.5278 \] \[ 0.5278 \times 100 \approx 52.8\% \] **Answer:** 52.8 %

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

First, let's find the volume of both containers. The volume \( V \) of a cylinder is calculated using the formula \( V = \pi r^2 h \). For Container A: - Radius \( r_A = 6 \) feet - Height \( h_A = 19 \) feet - Volume \( V_A = \pi (6^2)(19) = \pi (36)(19) = 684\pi \) cubic feet For Container B: - Radius \( r_B = 9 \) feet - Height \( h_B = 16 \) feet - Volume \( V_B = \pi (9^2)(16) = \pi (81)(16) = 1296\pi \) cubic feet Now we will calculate the volume of water that is transferred from Container A to Container B. Since Container A is emptied, the total weight of water in Container B after the pumping is \[ V_B = 684\pi \text{ (volume from Container A)}. \] To find the percent of Container B that is full after the transfer, we use the formula: \[ \text{Percent Full} = \left(\frac{V_A}{V_B}\right) \times 100 = \left(\frac{684\pi}{1296\pi}\right) \times 100 = \left(\frac{684}{1296}\right) \times 100. \] This simplifies to \[ \frac{684}{1296} \approx 0.526. \] Thus, \[ \text{Percent Full} \approx 52.6\%. \] To the nearest tenth, Container B is approximately **52.6% full** after the pumping is complete.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad