Pregunta
Question Simplify to a single power of 4 : \[ \left(4^{4}\right)^{5} \] Answer Attempt 1 out of 2 Answer: 4
Ask by Stephens Malone. in the United States
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The simplified form of \((4^4)^5\) is \(4^{20}\).
Solución
Calculate or simplify the expression \( (4^4)^5 \).
Calculate the value by following steps:
- step0: Calculate:
\(\left(4^{4}\right)^{5}\)
- step1: Multiply the exponents:
\(4^{4\times 5}\)
- step2: Multiply the numbers:
\(4^{20}\)
The simplified form of \((4^4)^5\) is \(4^{20}\) or approximately \(1.099512 \times 10^{12}\).
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
To simplify \(\left(4^{4}\right)^{5}\), you can use the power of a power rule which states that \((a^m)^n = a^{m \cdot n}\). So here, you'll multiply the exponents: \(4 \cdot 5 = 20\). Thus, \(\left(4^{4}\right)^{5} = 4^{20}\). Remember, when working with powers, especially with bases that are already exponentiated, always keep this rule in mind to avoid oversimplifying your answer!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium