Pregunta
Multiply. \( \left.\qquad \begin{array}{l}6 v \cdot 2 x^{5} \cdot 3 v^{6} x^{9} \\ \text { Simplify your answer as much as possible. } \\ \hline \square\end{array}\right) \)
Ask by Cole Young. in the United States
Jan 29,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\(36v^{7}x^{14}\)
Solución
To multiply and simplify the expression \(6v \cdot 2x^{5} \cdot 3v^{6}x^{9}\), follow these steps:
1. **Multiply the coefficients:**
\[
6 \times 2 \times 3 = 36
\]
2. **Combine the like terms for \(v\):**
\[
v \times v^{6} = v^{1+6} = v^{7}
\]
3. **Combine the like terms for \(x\):**
\[
x^{5} \times x^{9} = x^{5+9} = x^{14}
\]
Putting it all together, the simplified expression is:
\[
36v^{7}x^{14}
\]
**Final Answer:**
\[
36v^{7}x^{14}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To multiply \(6v \cdot 2x^{5} \cdot 3v^{6}x^{9}\), first, multiply the coefficients (the numbers) together: \(6 \cdot 2 \cdot 3 = 36\). Next, for the variables, combine like bases. For \(v\), you have \(v^1\) and \(v^6\): \(v^{1+6} = v^{7}\). For \(x\), you have \(x^{5}\) and \(x^{9}\): \(x^{5+9} = x^{14}\). Putting it all together, the simplified expression is: \[\boxed{36v^{7}x^{14}}.\]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium