Pregunta
upstudy study bank question image url

EXERCISE 1.7 R \( \begin{array}{llll}\text { (a) Rationalise the denominator and leave the answer in simplest surd form: } \\ \begin{array}{llll}\text { (1) } \frac{3}{\sqrt{6}} & \text { (2) } \frac{2}{5 \sqrt{2}} & \text { (3) } \frac{3}{\sqrt[3]{9}} & \text { (4) } \frac{2}{4+\sqrt{2}}\end{array}\end{array}> \)

Ask by O'Quinn Clark. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the simplified answers for each expression: 1. \( \frac{3}{\sqrt{6}} = \frac{\sqrt{6}}{2} \) 2. \( \frac{2}{5\sqrt{2}} = \frac{\sqrt{2}}{5} \) 3. \( \frac{3}{\sqrt[3]{9}} = \sqrt[3]{3} \) 4. \( \frac{2}{4 + \sqrt{2}} = \frac{4 - \sqrt{2}}{7} \)

Solución

Certainly! Let's rationalize the denominators of each expression and present the answers in their simplest surd forms. ### (a) Rationalize the denominator and simplify: #### (1) \( \frac{3}{\sqrt{6}} \) **Solution:** To rationalize the denominator, multiply both the numerator and the denominator by \( \sqrt{6} \): \[ \frac{3}{\sqrt{6}} \times \frac{\sqrt{6}}{\sqrt{6}} = \frac{3\sqrt{6}}{6} = \frac{\sqrt{6}}{2} \] **Answer:** \[ \frac{\sqrt{6}}{2} \] --- #### (2) \( \frac{2}{5\sqrt{2}} \) **Solution:** Multiply both the numerator and the denominator by \( \sqrt{2} \): \[ \frac{2}{5\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{2\sqrt{2}}{5 \times 2} = \frac{\sqrt{2}}{5} \] **Answer:** \[ \frac{\sqrt{2}}{5} \] --- #### (3) \( \frac{3}{\sqrt[3]{9}} \) **Solution:** First, recognize that \( \sqrt[3]{9} = 9^{1/3} \). To rationalize the denominator, multiply by \( 9^{2/3} \) (which is \( \sqrt[3]{81} \)) to make the denominator a whole number: \[ \frac{3}{9^{1/3}} \times \frac{9^{2/3}}{9^{2/3}} = \frac{3 \times 9^{2/3}}{9^{1/3} \times 9^{2/3}} = \frac{3 \times 9^{2/3}}{9} = \frac{9^{2/3}}{3} \] Since \( 9^{2/3} = (3^2)^{2/3} = 3^{4/3} \), we have: \[ \frac{3^{4/3}}{3} = 3^{4/3 - 1} = 3^{1/3} = \sqrt[3]{3} \] **Answer:** \[ \sqrt[3]{3} \] --- #### (4) \( \frac{2}{4 + \sqrt{2}} \) **Solution:** To rationalize the denominator, multiply by the conjugate of the denominator, which is \( 4 - \sqrt{2} \): \[ \frac{2}{4 + \sqrt{2}} \times \frac{4 - \sqrt{2}}{4 - \sqrt{2}} = \frac{2(4 - \sqrt{2})}{(4)^2 - (\sqrt{2})^2} = \frac{8 - 2\sqrt{2}}{16 - 2} = \frac{8 - 2\sqrt{2}}{14} \] Simplify by dividing numerator and denominator by 2: \[ \frac{8 - 2\sqrt{2}}{14} = \frac{4 - \sqrt{2}}{7} \] **Answer:** \[ \frac{4 - \sqrt{2}}{7} \] --- ### Summary of Answers: 1. \( \frac{3}{\sqrt{6}} = \frac{\sqrt{6}}{2} \) 2. \( \frac{2}{5\sqrt{2}} = \frac{\sqrt{2}}{5} \) 3. \( \frac{3}{\sqrt[3]{9}} = \sqrt[3]{3} \) 4. \( \frac{2}{4 + \sqrt{2}} = \frac{4 - \sqrt{2}}{7} \) If you have any more questions or need further clarification, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To rationalize the denominators of the given expressions, we will first address each of them individually. 1. **For** \( \frac{3}{\sqrt{6}} \): Multiply the numerator and denominator by \( \sqrt{6} \): \[ \frac{3 \sqrt{6}}{6} = \frac{\sqrt{6}}{2}. \] 2. **For** \( \frac{2}{5 \sqrt{2}} \): Multiply the numerator and denominator by \( \sqrt{2} \): \[ \frac{2 \sqrt{2}}{5 \cdot 2} = \frac{\sqrt{2}}{5}. \] 3. **For** \( \frac{3}{\sqrt[3]{9}} \): Note that \( \sqrt[3]{9} = 3^{2/3} \). So multiply by \( \sqrt[3]{3^2} \): \[ \frac{3 \cdot \sqrt[3]{9}}{3} = \sqrt[3]{27} = 3. \] 4. **For** \( \frac{2}{4+\sqrt{2}} \): Multiply numerator and denominator by the conjugate \( 4-\sqrt{2} \): \[ \frac{2(4-\sqrt{2})}{(4+\sqrt{2})(4-\sqrt{2})} = \frac{8 - 2\sqrt{2}}{16 - 2} = \frac{8 - 2\sqrt{2}}{14}. \] So the answers in simplest surd form are: 1. \( \frac{\sqrt{6}}{2} \) 2. \( \frac{\sqrt{2}}{5} \) 3. \( 3 \) 4. \( \frac{8 - 2\sqrt{2}}{14} \) or simplified to \( \frac{4 - \sqrt{2}}{7} \).

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad