EXERCISE 1.7 R \( \begin{array}{llll}\text { (a) Rationalise the denominator and leave the answer in simplest surd form: } \\ \begin{array}{llll}\text { (1) } \frac{3}{\sqrt{6}} & \text { (2) } \frac{2}{5 \sqrt{2}} & \text { (3) } \frac{3}{\sqrt[3]{9}} & \text { (4) } \frac{2}{4+\sqrt{2}}\end{array}\end{array}> \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To rationalize the denominators of the given expressions, we will first address each of them individually. 1. **For** \( \frac{3}{\sqrt{6}} \): Multiply the numerator and denominator by \( \sqrt{6} \): \[ \frac{3 \sqrt{6}}{6} = \frac{\sqrt{6}}{2}. \] 2. **For** \( \frac{2}{5 \sqrt{2}} \): Multiply the numerator and denominator by \( \sqrt{2} \): \[ \frac{2 \sqrt{2}}{5 \cdot 2} = \frac{\sqrt{2}}{5}. \] 3. **For** \( \frac{3}{\sqrt[3]{9}} \): Note that \( \sqrt[3]{9} = 3^{2/3} \). So multiply by \( \sqrt[3]{3^2} \): \[ \frac{3 \cdot \sqrt[3]{9}}{3} = \sqrt[3]{27} = 3. \] 4. **For** \( \frac{2}{4+\sqrt{2}} \): Multiply numerator and denominator by the conjugate \( 4-\sqrt{2} \): \[ \frac{2(4-\sqrt{2})}{(4+\sqrt{2})(4-\sqrt{2})} = \frac{8 - 2\sqrt{2}}{16 - 2} = \frac{8 - 2\sqrt{2}}{14}. \] So the answers in simplest surd form are: 1. \( \frac{\sqrt{6}}{2} \) 2. \( \frac{\sqrt{2}}{5} \) 3. \( 3 \) 4. \( \frac{8 - 2\sqrt{2}}{14} \) or simplified to \( \frac{4 - \sqrt{2}}{7} \).