Use properties of logarithms to evaluate without using a calculator. \[ 8 \log _{4}(2)+\frac{\log _{4}(64)}{3 \log _{4}(4)} \]
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To evaluate the expression, we can first simplify each part using the properties of logarithms. The first part is \(8 \log_{4}(2)\). We know that \( \log_{4}(2) = \frac{1}{2} \) because \(2\) is \(4^{1/2}\). Therefore, \[ 8 \log_{4}(2) = 8 \cdot \frac{1}{2} = 4. \] The second part is \( \frac{\log_{4}(64)}{3 \log_{4}(4)} \). We first simplify \( \log_{4}(64) \). Noting that \(64 = 4^3\), we have \[ \log_{4}(64) = 3. \] Also, since \( \log_{4}(4) = 1\), we find that \[ 3 \log_{4}(4) = 3 \cdot 1 = 3. \] Thus, \[ \frac{\log_{4}(64)}{3 \log_{4}(4)} = \frac{3}{3} = 1. \] Now combining both parts: \[ 8 \log_{4}(2) + \frac{\log_{4}(64)}{3 \log_{4}(4)} = 4 + 1 = 5. \] So, the final answer is \[ \boxed{5}. \]