Pregunta
upstudy study bank question image url

(a) \( \left[\left(\frac{8}{19}\right)^{17} \div\left(\frac{8}{19}\right)^{2}\right] \times\left(\frac{8}{19}\right)^{2} \) (b) \( \frac{3^{8} \times 3^{3} \times 5^{8} \times 5^{0}}{(3 \times 5)^{5}} \)

Ask by Spencer French. in India
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

- Part (a): \(\left(\frac{8}{19}\right)^{17}\) or approximately \(4.108834 \times 10^{-7}\) - Part (b): \(91125\)

Solución

Calculate the value by following steps: - step0: Calculate: \(\left(\frac{\left(\frac{8}{19}\right)^{17}}{\left(\frac{8}{19}\right)^{2}}\right)\left(\frac{8}{19}\right)^{2}\) - step1: Multiply by \(a^{-n}:\) \(\left(\left(\frac{8}{19}\right)^{17}\left(\frac{8}{19}\right)^{-2}\right)\left(\frac{8}{19}\right)^{2}\) - step2: Multiply the numbers: \(\frac{8^{15}}{19^{15}}\times \left(\frac{8}{19}\right)^{2}\) - step3: Evaluate the power: \(\frac{8^{15}}{19^{15}}\times \frac{8^{2}}{19^{2}}\) - step4: Multiply the fractions: \(\frac{8^{15}\times 8^{2}}{19^{15}\times 19^{2}}\) - step5: Multiply: \(\frac{8^{17}}{19^{17}}\) Calculate or simplify the expression \( (3^8 * 3^3 * 5^8 * 5^0) / ((3 * 5)^5) \). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(3^{8}\times 3^{3}\times 5^{8}\times 5^{0}\right)}{\left(\left(3\times 5\right)^{5}\right)}\) - step1: Evaluate the power: \(\frac{\left(3^{8}\times 3^{3}\times 5^{8}\times 1\right)}{\left(\left(3\times 5\right)^{5}\right)}\) - step2: Evaluate: \(\frac{\left(3^{8}\times 3^{3}\times 5^{8}\times 1\right)}{\left(3\times 5\right)^{5}}\) - step3: Remove the parentheses: \(\frac{3^{8}\times 3^{3}\times 5^{8}\times 1}{\left(3\times 5\right)^{5}}\) - step4: Multiply the numbers: \(\frac{3^{8}\times 3^{3}\times 5^{8}\times 1}{15^{5}}\) - step5: Multiply: \(\frac{3^{11}\times 5^{8}}{15^{5}}\) - step6: Factor the expression: \(\frac{3^{11}\times 5^{8}}{3^{5}\times 5^{5}}\) - step7: Reduce the fraction: \(3^{6}\times 5^{3}\) - step8: Expand the expression: \(729\times 5^{3}\) - step9: Expand the expression: \(729\times 125\) - step10: Multiply the numbers: \(91125\) Let's solve each part step by step. ### Part (a) We need to simplify the expression: \[ \left[\left(\frac{8}{19}\right)^{17} \div\left(\frac{8}{19}\right)^{2}\right] \times\left(\frac{8}{19}\right)^{2} \] 1. **Division of Exponents**: When dividing powers with the same base, we subtract the exponents: \[ \left(\frac{8}{19}\right)^{17} \div \left(\frac{8}{19}\right)^{2} = \left(\frac{8}{19}\right)^{17 - 2} = \left(\frac{8}{19}\right)^{15} \] 2. **Multiplication of Exponents**: Now we multiply this result by \(\left(\frac{8}{19}\right)^{2}\): \[ \left(\frac{8}{19}\right)^{15} \times \left(\frac{8}{19}\right)^{2} = \left(\frac{8}{19}\right)^{15 + 2} = \left(\frac{8}{19}\right)^{17} \] Thus, the simplified result for part (a) is: \[ \left(\frac{8}{19}\right)^{17} \quad \text{or approximately } 4.108834 \times 10^{-7} \] ### Part (b) We need to simplify the expression: \[ \frac{3^{8} \times 3^{3} \times 5^{8} \times 5^{0}}{(3 \times 5)^{5}} \] 1. **Combine the Numerator**: We can combine the powers of the same base: \[ 3^{8} \times 3^{3} = 3^{8 + 3} = 3^{11} \] And since \(5^{0} = 1\), we have: \[ 5^{8} \times 5^{0} = 5^{8} \] Therefore, the numerator becomes: \[ 3^{11} \times 5^{8} \] 2. **Simplify the Denominator**: The denominator can be simplified as follows: \[ (3 \times 5)^{5} = 3^{5} \times 5^{5} \] 3. **Combine the Fraction**: Now we can write the entire expression: \[ \frac{3^{11} \times 5^{8}}{3^{5} \times 5^{5}} = \frac{3^{11}}{3^{5}} \times \frac{5^{8}}{5^{5}} = 3^{11 - 5} \times 5^{8 - 5} = 3^{6} \times 5^{3} \] 4. **Calculate the Final Result**: Now we can calculate \(3^{6} \times 5^{3}\): \[ 3^{6} = 729 \quad \text{and} \quad 5^{3} = 125 \] Therefore: \[ 3^{6} \times 5^{3} = 729 \times 125 = 91125 \] Thus, the simplified result for part (b) is: \[ 91125 \] ### Final Results - Part (a): \(\left(\frac{8}{19}\right)^{17}\) or approximately \(4.108834 \times 10^{-7}\) - Part (b): \(91125\)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

For (a), we can simplify the expression using properties of exponents. When dividing powers with the same base, you subtract the exponents: \( \left(\frac{8}{19}\right)^{17-2} = \left(\frac{8}{19}\right)^{15} \). Then, multiplying by \( \left(\frac{8}{19}\right)^{2} \) means we add the exponents: \( \left(\frac{8}{19}\right)^{15 + 2} = \left(\frac{8}{19}\right)^{17} \). For (b), we can also use properties of exponents here. The numerator simplifies to \( 3^{8+3} \times 5^{8} = 3^{11} \times 5^{8} \). The denominator \( (3 \times 5)^{5} = 3^{5} \times 5^{5} \). So, we rewrite the expression as \( \frac{3^{11} \times 5^{8}}{3^{5} \times 5^{5}} \), which simplifies to \( 3^{11-5} \times 5^{8-5} = 3^{6} \times 5^{3} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad