Find the unit vector in the direction of \( \mathbf{v} \). \[ \mathbf{v}=-7.1 \mathbf{i}+3.5 \mathbf{j} \]
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find the unit vector in the direction of \( \mathbf{v} = -7.1 \mathbf{i} + 3.5 \mathbf{j} \), we first need to determine the magnitude of \( \mathbf{v} \). The magnitude is calculated using the formula: \[ \|\mathbf{v}\| = \sqrt{(-7.1)^2 + (3.5)^2} = \sqrt{50.41 + 12.25} = \sqrt{62.66} \approx 7.91. \] Next, we divide each component of \( \mathbf{v} \) by its magnitude to find the unit vector: \[ \mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|} = \left(-\frac{7.1}{7.91}, \frac{3.5}{7.91}\right) \approx \left(-0.898, 0.443\right). \] Thus, the unit vector in the direction of \( \mathbf{v} \) is approximately: \[ \mathbf{u} \approx -0.898 \mathbf{i} + 0.443 \mathbf{j}. \]