6. Consider the differential equation \[ \frac{d y}{d t}=y(y-1)^{2}(y-2)^{3}(y-3)^{4} \] Select the equilibrium point(s) in the list below that are nodes: \[ y=0, \quad y=1, \quad y=2, \quad y=3 \]
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To determine the stability of the equilibrium points, we need to analyze the behavior of the differential equation near each point. The equilibrium points are the values of \(y\) for which \(\frac{dy}{dt} = 0\). The given differential equation can be factored as follows: \[ \frac{d y}{d t} = y(y-1)^2(y-2)^3(y-3)^4. \] Setting this equal to zero, we find the equilibrium points: \(y=0\), \(y=1\), \(y=2\), and \(y=3\). Next, we will analyze each equilibrium point's stability by considering the sign of \(\frac{dy}{dt}\) around each point: 1. **At \(y=0\)**: - For \(y < 0\), \(\frac{dy}{dt} < 0\). - For \(y > 0\), \(\frac{dy}{dt} > 0\). - Thus, \(y=0\) is a stable equilibrium (attractor). 2. **At \(y=1\)**: - For \(y < 1\), \(\frac{dy}{dt} < 0\). - For \(y > 1\), \(\frac{dy}{dt} > 0\). - Therefore, \(y=1\) is also a stable equilibrium (attractor). 3. **At \(y=2\)**: - For \(y < 2\), \(\frac{dy}{dt} < 0\) (since \((y-2)^3\) is negative). - For \(y > 2\), \(\frac{dy}{dt} > 0\). - Hence, \(y=2\) is an unstable equilibrium (repeller). 4. **At \(y=3\)**: - For \(y < 3\), \(\frac{dy}{dt} < 0\) (since \((y-3)^4\) is positive). - For \(y > 3\), \(\frac{dy}{dt} > 0\). - Thus, \(y=3\) is a stable equilibrium (attractor). In conclusion, \(y=0\), \(y=1\), and \(y=3\) are nodes, while \(y=2\) is not. Specifically, the nodes are \(y=0\), \(y=1\), and \(y=3\).