Pregunta
upstudy study bank question image url

6. Consider the differential equation \[ \frac{d y}{d t}=y(y-1)^{2}(y-2)^{3}(y-3)^{4} \] Select the equilibrium point(s) in the list below that are nodes: \[ y=0, \quad y=1, \quad y=2, \quad y=3 \]

Ask by Wilson Summers. in the United States
Jan 25,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Both \( y = 1 \) and \( y = 3 \) are equilibrium points that are nodes.

Solución

In the given differential equation: \[ \frac{d y}{d t} = y(y-1)^{2}(y-2)^{3}(y-3)^{4} \] the equilibrium points occur where \(\frac{dy}{dt} = 0\), which are \(y = 0\), \(y = 1\), \(y = 2\), and \(y = 3\). ### Understanding the Nature of Each Equilibrium Point 1. **\(y = 0\) (Multiplicity 1):** - **Behavior:** - For \(y < 0\), \(\frac{dy}{dt} > 0\). - For \(y > 0\), \(\frac{dy}{dt} > 0\). - **Interpretation:** The solution does not cross \(y = 0\) and flows away from it on both sides, indicating it's a **repelling equilibrium**. 2. **\(y = 1\) (Multiplicity 2):** - **Behavior:** - For \(y < 1\), \(\frac{dy}{dt} > 0\). - For \(y > 1\), \(\frac{dy}{dt} > 0\). - **Interpretation:** The solution does not cross \(y = 1\) and flows away on both sides, making it a **non-crossing equilibrium**. Due to its even multiplicity, it behaves like a **node**. 3. **\(y = 2\) (Multiplicity 3):** - **Behavior:** - For \(y < 2\), \(\frac{dy}{dt} < 0\). - For \(y > 2\), \(\frac{dy}{dt} > 0\). - **Interpretation:** The solution crosses \(y = 2\), changing direction from decreasing to increasing. This indicates a **semi-stable equilibrium**. 4. **\(y = 3\) (Multiplicity 4):** - **Behavior:** - For \(y < 3\), \(\frac{dy}{dt} > 0\). - For \(y > 3\), \(\frac{dy}{dt} > 0\). - **Interpretation:** Similar to \(y = 1\), the solution does not cross \(y = 3\) and flows away on both sides, behaving like a **node** due to its even multiplicity. ### Conclusion **Equilibrium points with even multiplicities (i.e., \(y = 1\) and \(y = 3\)) behave as nodes** in the phase line analysis of this differential equation. **Answer:** Both y = 1 and y = 3 are equilibrium points that are nodes.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To determine the stability of the equilibrium points, we need to analyze the behavior of the differential equation near each point. The equilibrium points are the values of \(y\) for which \(\frac{dy}{dt} = 0\). The given differential equation can be factored as follows: \[ \frac{d y}{d t} = y(y-1)^2(y-2)^3(y-3)^4. \] Setting this equal to zero, we find the equilibrium points: \(y=0\), \(y=1\), \(y=2\), and \(y=3\). Next, we will analyze each equilibrium point's stability by considering the sign of \(\frac{dy}{dt}\) around each point: 1. **At \(y=0\)**: - For \(y < 0\), \(\frac{dy}{dt} < 0\). - For \(y > 0\), \(\frac{dy}{dt} > 0\). - Thus, \(y=0\) is a stable equilibrium (attractor). 2. **At \(y=1\)**: - For \(y < 1\), \(\frac{dy}{dt} < 0\). - For \(y > 1\), \(\frac{dy}{dt} > 0\). - Therefore, \(y=1\) is also a stable equilibrium (attractor). 3. **At \(y=2\)**: - For \(y < 2\), \(\frac{dy}{dt} < 0\) (since \((y-2)^3\) is negative). - For \(y > 2\), \(\frac{dy}{dt} > 0\). - Hence, \(y=2\) is an unstable equilibrium (repeller). 4. **At \(y=3\)**: - For \(y < 3\), \(\frac{dy}{dt} < 0\) (since \((y-3)^4\) is positive). - For \(y > 3\), \(\frac{dy}{dt} > 0\). - Thus, \(y=3\) is a stable equilibrium (attractor). In conclusion, \(y=0\), \(y=1\), and \(y=3\) are nodes, while \(y=2\) is not. Specifically, the nodes are \(y=0\), \(y=1\), and \(y=3\).

preguntas relacionadas

Multiple Choice Identify the choice that best completes the statement or answers the question. Find any points of discontinuity for the rational function. 1. \( y=\frac{(x-7)(x+2)(x-9)}{(x-5)(x-2)} \) a. \( x=-5, x=-2 \) b. \( x=5, x=2 \) c. \( x=-7, x=2, x=-9 \) d. \( x=7, x=-2, x=9 \) 2. \( y=\frac{(x+7)(x+4)(x+2)}{(x+5)(x-3)} \) a. \( x=-5, x=3 \) b. \( x=7, x=4, x=2 \) c. \( x=-7, x=-4, x=-2 \) d. \( x=5, x=-3 \) 3. \( y=\frac{x+4}{x^{2}+8 x+15} \) a. \( x=-5, x=-3 \) b. \( x=-4 \) c. \( x=-5, x=3 \) d. \( x=5, x=3 \) 4. \( y=\frac{x-3}{x^{2}+3 x-10} \) a. \( x=-5, x=2 \) b. \( x=5, x=-2 \) c. \( x=3 \) d. \( x \) \( =-5, x=-2 \) 6. What are the points of discontinuity? Are they all removable? \[ y=\frac{(x-4)}{x^{2}-13 x+36} \] a. \( x=-9, x=-4, x=8 \); yes b. \( x=1, x=8, x= \) -8; no c. \( x=9, x=4 \); no d. \( x=-9, x=-4 \); no 7. Describe the vertical asymptote(s) and hole(s) for the graph of \( y=\frac{(x-2)(x-5)}{(x-5)(x+2)} \). a. asymptote: \( x=2 \) and hole: \( x=-5 \) b. asymptotes: \( x=-2 \) and hole: \( x=-5 \) c. asymptote: \( x=-2 \) and hole: \( x=5 \) d. asymptote: \( x=-2 \) and hole: \( x=-2 \) a. \( x=-3, x=-8 \); no b. \( x=5, x=-7, x=1 \); no c. \( x=-5, x=7, x=-1 \); yes d. \( x=3, x=8 \); yes 8. Describe the vertical asymptote(s) and hole(s) for the graph of \( y=\frac{x+1}{x^{2}+6 x+5} \). a. asymptote: \( x=-1 \) and hole: \( x=-1 \) b. asymptote: \( x=-1 \) and hole: \( x=-1 \) c. asymptotes: \( x=-1,-1 \) and hole: \( x=-1 \) d. asymptote: -5 and hole: \( x=-1 \), 9. Find the horizontal asymptote of the graph of \( y=\frac{7 x^{6}+7 x+3}{9 x^{5}+7 x+3} \). a. \( y=0 \) b. \( y=\frac{7}{9} \) c. no horizontal asymptote d. \( y=\frac{6}{5} \)
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad