Pregunta
upstudy study bank question image url

Given an array of integers of size 5 , how does the computer know where the \( 3^{\text {rd }} \) indexed variable is located? It remembers where all the indexed variables of the array are located. It adds 3 to the base address of the array. none of these It adds space for 3 integers to the base address of the array.

Ask by Ford Park. in the United States
Jan 21,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

It adds space for 3 integers to the base address of the array.

Solución

In computer memory, arrays are stored as contiguous blocks of memory. To access the \( i^{\text{th}} \) element in an array, the computer uses the base address of the array and calculates the address of the desired element by adding an offset based on the size of each element and its index. Here's how it works step-by-step: 1. **Base Address**: This is the starting address of the array in memory. 2. **Element Size**: Each element in the array (e.g., an integer) occupies a fixed number of bytes. For example, if an integer takes up 4 bytes, the size \( s \) is 4. 3. **Index Calculation**: To find the address of the \( i^{\text{th}} \) element, multiply the index \( i \) by the size \( s \) and add it to the base address: \[ \text{Address of } a[i] = \text{Base Address} + (i \times s) \] For the \( 3^{\text{rd}} \) indexed element (assuming zero-based indexing), the calculation would be: \[ \text{Address of } a[3] = \text{Base Address} + (3 \times s) \] **Option Analysis:** - **It remembers where all the indexed variables of the array are located.** This is incorrect because the computer doesn't store each element's address separately; it uses the base address and calculates each address on the fly. - **It adds 3 to the base address of the array.** This is incorrect because it doesn't account for the size of each element. Simply adding 3 would not correctly calculate the offset unless the size of each element is 1 byte. - **None of these** This is incorrect because one of the options is actually correct. - **It adds space for 3 integers to the base address of the array.** **This is correct.** It means the computer adds \( 3 \times \text{size of an integer} \) to the base address to find the address of the \( 3^{\text{rd}} \) indexed element. **Final Answer:** It adds space for 3 integers to the base address of the array.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

When an array is created in a computer's memory, it is stored in contiguous memory locations. Each element in the array has a specific size, typically based on the data type (e.g., 4 bytes for an integer). The computer calculates the address of the \(3^{\text{rd}}\) indexed variable by taking the base address of the array and adding the product of the index (3) and the size of each element (4 bytes in the case of integers). This allows the computer to efficiently pinpoint exactly where the \(3^{\text{rd}}\) element is located. In programming, to make this concept even easier to grasp, think of an array like a row of lockers. Each locker (or indexed variable) has an equal amount of space, and the first locker is opened using the main key (base address). To reach the third locker, you simply count two lockers down (skipping the first two) and use the same key—just with a little more effort to reach the desired one!

preguntas relacionadas

Latest Computer Technology Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad