Pregunta
upstudy study bank question image url

b) Suppose that the time it takes a data collection operator to fill out an electronic form for a database is uniformly between 1.5 and 2.2 minutes i. What is the probability that it will take less than two minutes to fill out the form? ii. Determine the cumulative distribution function of the time it takes to fill out the form

Ask by Kelley Collins. in Kenya
Dec 25,2024

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Part b.i: Probability that it takes less than 2 minutes** The probability is \( \frac{5}{7} \) (approximately 71.43 %). **Part b.ii: Cumulative Distribution Function (CDF)** \[ F_X(x) = \begin{cases} 0 & \text{if } x < 1.5, \\ \frac{x - 1.5}{0.7} & \text{if } 1.5 \leq x \leq 2.2, \\ 1 & \text{if } x > 2.2. \end{cases} \]

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Bonus Knowledge

To find the probability that it will take less than two minutes to fill out the form, we can use the properties of a uniform distribution. The range of time is from 1.5 minutes to 2.2 minutes. The total length of this interval is: 2.2 - 1.5 = 0.7 minutes. Now, we want to find the probability that the time (X) is less than 2 minutes: P(X < 2) = (2.0 - 1.5) / (2.2 - 1.5) = 0.5 / 0.7 ≈ 0.7143. So, the probability that it will take less than two minutes is approximately 0.7143 or 71.43%. Now, for the cumulative distribution function (CDF) of the time it takes to fill out the form, we can define it as follows: - For x < 1.5, F(x) = 0 (since the time cannot be less than 1.5 minutes). - For 1.5 ≤ x < 2.2, F(x) = (x - 1.5) / (2.2 - 1.5). - For x ≥ 2.2, F(x) = 1 (since the time cannot exceed 2.2 minutes). Thus, the CDF of the time to fill out the form is: F(x) = 0 for x < 1.5, (x - 1.5) / 0.7 for 1.5 ≤ x < 2.2, 1 for x ≥ 2.2.

preguntas relacionadas

Latest Probability Questions

If events \( A \) and \( B \) are from the same sample space, and if \( P(A)=0.8 \) and \( P(B)=0.9 \), can events \( A \) and \( B \) be mutually exclusive? Explain. Choose the correct answer below. A. All probabilities are less than or equal to 1 and greater than or equal to 0 . If events are mutually exclusive, then \( P(A \cup B)=P(A)+P(B) \). Therefore, if \( A \) and \( B \) are mutually exclusive, \( P(A \cup \) \( B)=P(A)+P(B)=0.8+0.9=1.7 \), which is impossible. Therefore, events \( A \) and \( B \) are not mutually exclusive. B. All probabilities are less than or equal to 1 and greater than or equal to 0 . If events are mutually exclusive, then \( P(A \cup B)=P(A)+P(B) \). Therefore, if \( A \) and \( B \) are mutually exclusive, \( P(A \cup B)=P(A)+P(B)=0.8+0.9=0 \), which is possible. Therefore, events \( A \) and \( B \) are mutually exclusive. C. All probabilities are less than or equal to 1 and greater than or equal to 0 . If events are mutually exclusive, then \( P(A \cup B)=P(A)+P(B) \). Therefore, if \( A \) and \( B \) are mutually exclusive, \( P(A \cup B)=P(A)+P(B)=0.8+0.9=1 \), which is possible. Therefore, events \( A \) and \( B \) are mutually exclusive. D. All probabilities are less than or equal to 1 and greater than or equal to 0 . If events are mutually exclusive, then \( P(A \cup B)=P(A)+P(B) \). Therefore, if \( A \) and \( B \) are mutually exclusive, \( P(A \cup \) \( B)=P(A)+P(B)=0.8+0.9=1.7 \), which is possible. Therefore, events \( A \) and \( B \) are mutually exclusive. D. A
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad