\begin{tabular}{lll}\( \mathbf{1} \quad \begin{array}{l}\text { An } n \text {-sided figure has } \frac{1}{2} n(n-3) \text { diagonals. } \\ \text { (i) How many diagonals does an octagon have? } \\ \text { (ii) How many sides does a figure with } 54 \text { diagonals have? }\end{array} \) & \( \mathbf{2} \) marks \\ & & \( \mathbf{4} \) marks \\ \hline\end{tabular}
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the number of diagonals in an octagon (an 8-sided figure), we can substitute \( n = 8 \) into the formula for diagonals: \[ \text{Number of diagonals} = \frac{1}{2} n(n-3) = \frac{1}{2} \cdot 8 \cdot (8-3) = \frac{1}{2} \cdot 8 \cdot 5 = \frac{1}{2} \cdot 40 = 20. \] So, an octagon has 20 diagonals. Next, if a figure has 54 diagonals, we can set up the equation: \[ \frac{1}{2} n(n-3) = 54. \] Multiplying both sides by 2 gives us \( n(n-3) = 108 \). Rearranging this yields \( n^2 - 3n - 108 = 0 \). We can solve this quadratic equation using the quadratic formula: \[ n = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(1)(-108)}}{2(1)} = \frac{3 \pm \sqrt{9 + 432}}{2} = \frac{3 \pm \sqrt{441}}{2} = \frac{3 \pm 21}{2}. \] Thus, we get two possible values for \( n \): 1. \( n = \frac{24}{2} = 12 \) (valid as number of sides cannot be negative) 2. \( n = \frac{-18}{2} \) (not valid). Therefore, a figure with 54 diagonals has 12 sides.