Pregunta
upstudy study bank question image url

\begin{tabular}{lll}\( \mathbf{1} \quad \begin{array}{l}\text { An } n \text {-sided figure has } \frac{1}{2} n(n-3) \text { diagonals. } \\ \text { (i) How many diagonals does an octagon have? } \\ \text { (ii) How many sides does a figure with } 54 \text { diagonals have? }\end{array} \) & \( \mathbf{2} \) marks \\ & & \( \mathbf{4} \) marks \\ \hline\end{tabular}

Ask by King Frazier. in Malta
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

An octagon has 20 diagonals. A polygon with 54 diagonals has 12 sides.

Solución

To solve the given problems, we'll use the formula for the number of diagonals \( D \) in an \( n \)-sided polygon: \[ D = \frac{1}{2} n (n - 3) \] ### (i) Number of Diagonals in an Octagon An **octagon** has \( n = 8 \) sides. Plugging this into the formula: \[ D = \frac{1}{2} \times 8 \times (8 - 3) = \frac{1}{2} \times 8 \times 5 = \frac{1}{2} \times 40 = 20 \] **Answer:** An octagon has **20 diagonals**. --- ### (ii) Number of Sides in a Polygon with 54 Diagonals We are given \( D = 54 \) and need to find \( n \). Using the formula: \[ 54 = \frac{1}{2} n (n - 3) \] First, multiply both sides by 2 to eliminate the fraction: \[ 108 = n (n - 3) \] Expand the equation: \[ n^2 - 3n - 108 = 0 \] This is a quadratic equation in the form \( ax^2 + bx + c = 0 \). To solve for \( n \), we can factor or use the quadratic formula. **Factoring Method:** We look for two numbers that multiply to \(-108\) and add up to \(-3\). The numbers \( -12 \) and \( 9 \) satisfy this: \[ n^2 - 12n + 9n - 108 = 0 \\ (n - 12)(n + 9) = 0 \] Setting each factor equal to zero: \[ n - 12 = 0 \quad \Rightarrow \quad n = 12 \\ n + 9 = 0 \quad \Rightarrow \quad n = -9 \] Since the number of sides cannot be negative, we discard \( n = -9 \). **Answer:** The polygon has **12 sides**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the number of diagonals in an octagon (an 8-sided figure), we can substitute \( n = 8 \) into the formula for diagonals: \[ \text{Number of diagonals} = \frac{1}{2} n(n-3) = \frac{1}{2} \cdot 8 \cdot (8-3) = \frac{1}{2} \cdot 8 \cdot 5 = \frac{1}{2} \cdot 40 = 20. \] So, an octagon has 20 diagonals. Next, if a figure has 54 diagonals, we can set up the equation: \[ \frac{1}{2} n(n-3) = 54. \] Multiplying both sides by 2 gives us \( n(n-3) = 108 \). Rearranging this yields \( n^2 - 3n - 108 = 0 \). We can solve this quadratic equation using the quadratic formula: \[ n = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(1)(-108)}}{2(1)} = \frac{3 \pm \sqrt{9 + 432}}{2} = \frac{3 \pm \sqrt{441}}{2} = \frac{3 \pm 21}{2}. \] Thus, we get two possible values for \( n \): 1. \( n = \frac{24}{2} = 12 \) (valid as number of sides cannot be negative) 2. \( n = \frac{-18}{2} \) (not valid). Therefore, a figure with 54 diagonals has 12 sides.

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad