Pregunta
upstudy study bank question image url

16. You toss a coin four times. What is the probability of tossing tails exactly half of the time?

Ask by Warren Hart. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability of tossing tails exactly half of the time in four coin tosses is \( \frac{3}{8} \).

Solución

To find the probability of tossing tails exactly half of the time when tossing a coin four times, we can follow these steps: 1. **Identify the total number of tosses**: We are tossing the coin \( n = 4 \) times. 2. **Determine the number of successful outcomes**: We want to find the probability of getting tails exactly \( k = 2 \) times (which is half of 4). 3. **Use the binomial probability formula**: The probability of getting exactly \( k \) successes (tails) in \( n \) trials (tosses) is given by the formula: \[ P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \] where: - \( \binom{n}{k} \) is the binomial coefficient, which represents the number of ways to choose \( k \) successes in \( n \) trials. - \( p \) is the probability of success on a single trial (for a fair coin, \( p = 0.5 \)). - \( (1-p) \) is the probability of failure. 4. **Calculate the binomial coefficient**: \[ \binom{4}{2} = \frac{4!}{2!(4-2)!} = \frac{4 \times 3}{2 \times 1} = 6 \] 5. **Substitute values into the formula**: \[ P(X = 2) = \binom{4}{2} (0.5)^2 (0.5)^{4-2} = 6 \times (0.5)^2 \times (0.5)^2 = 6 \times (0.5)^4 \] 6. **Calculate \( (0.5)^4 \)**: \[ (0.5)^4 = \frac{1}{16} \] 7. **Final calculation**: \[ P(X = 2) = 6 \times \frac{1}{16} = \frac{6}{16} = \frac{3}{8} \] Thus, the probability of tossing tails exactly half of the time (2 tails in 4 tosses) is \( \frac{3}{8} \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

When you toss a coin four times, each flip results in either heads or tails, creating a total of \(2^4 = 16\) possible outcomes. To find the probability of getting tails exactly two times, we use the binomial coefficient, denoted as \(C(n, k)\), where \(n\) is the total number of trials and \(k\) is the number of successful outcomes (tails in this case). So, the calculation becomes \(C(4, 2) = \frac{4!}{2!(4-2)!} = 6\) ways to achieve two tails. The probability can then be computed as \(\frac{C(4, 2)}{16} = \frac{6}{16} = \frac{3}{8}\). If you're ever in a coin toss pickle, remember that the binomial formula is your best friend! Just ensure you never forget to account for all possible outcomes in that mystical world of probability. It’s a fantastic blend of math and chance!

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad