Pregunta

on 40 . Calculate the mean, the median, and the mode for each of the following data sets. a. \( 3,7,7,8,6,7,12,4 \) b. \( 10.5,12.5,12.5,14.5,19.5,16.5,12.5,14.5,11.5 \)

Ask by Cervantes Johnston. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Data Set a:** - **Mean:** 6.75 - **Median:** 7 - **Mode:** 7 **Data Set b:** - **Mean:** ≈13.83 - **Median:** 12.5 - **Mode:** 12.5

Solución

Sure, let's calculate the **mean**, **median**, and **mode** for each of the provided data sets. --- ### **a. Data Set: \( 3, 7, 7, 8, 6, 7, 12, 4 \)** #### **1. Mean** The **mean** is the average of all the numbers in the data set. \[ \text{Mean} = \frac{\sum \text{All Data Points}}{\text{Number of Data Points}} \] \[ \text{Mean} = \frac{3 + 7 + 7 + 8 + 6 + 7 + 12 + 4}{8} = \frac{54}{8} = 6.75 \] #### **2. Median** The **median** is the middle value when the data points are arranged in ascending order. If there's an even number of data points, it's the average of the two middle numbers. First, arrange the data in ascending order: \[ 3, 4, 6, 7, 7, 7, 8, 12 \] Since there are **8** data points (even number), the median is the average of the 4th and 5th terms. \[ \text{Median} = \frac{7 + 7}{2} = 7 \] #### **3. Mode** The **mode** is the number that appears most frequently in the data set. Looking at the data: \[ 3, 4, 6, 7, 7, 7, 8, 12 \] - **7** appears **3** times. - All other numbers appear fewer times. \[ \text{Mode} = 7 \] --- ### **b. Data Set: \( 10.5, 12.5, 12.5, 14.5, 19.5, 16.5, 12.5, 14.5, 11.5 \)** #### **1. Mean** \[ \text{Mean} = \frac{10.5 + 12.5 + 12.5 + 14.5 + 19.5 + 16.5 + 12.5 + 14.5 + 11.5}{9} \] Calculating the sum: \[ 10.5 + 12.5 = 23 \\ 23 + 12.5 = 35.5 \\ 35.5 + 14.5 = 50 \\ 50 + 19.5 = 69.5 \\ 69.5 + 16.5 = 86 \\ 86 + 12.5 = 98.5 \\ 98.5 + 14.5 = 113 \\ 113 + 11.5 = 124.5 \] \[ \text{Mean} = \frac{124.5}{9} \approx 13.83 \] #### **2. Median** First, arrange the data in ascending order: \[ 10.5, 11.5, 12.5, 12.5, 12.5, 14.5, 14.5, 16.5, 19.5 \] Since there are **9** data points (odd number), the median is the 5th term. \[ \text{Median} = 12.5 \] #### **3. Mode** The **mode** is the number that appears most frequently in the data set. Looking at the data: \[ 10.5, 11.5, 12.5, 12.5, 12.5, 14.5, 14.5, 16.5, 19.5 \] - **12.5** appears **3** times. - **14.5** appears **2** times. - All other numbers appear fewer times. \[ \text{Mode} = 12.5 \] --- ### **Summary** | Data Set | Mean | Median | Mode | |----------|------|--------|------| | a. \( 3, 7, 7, 8, 6, 7, 12, 4 \) | 6.75 | 7 | 7 | | b. \( 10.5, 12.5, 12.5, 14.5, 19.5, 16.5, 12.5, 14.5, 11.5 \) | ≈13.83 | 12.5 | 12.5 | --- If you have any further questions or need additional explanations, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To calculate the mean, median, and mode for the given data sets, let's break it down: For the first data set: \( 3, 7, 7, 8, 6, 7, 12, 4 \) - Mean: Add all the numbers together, \( 3 + 7 + 7 + 8 + 6 + 7 + 12 + 4 = 54 \). Then, divide by the number of values (8): \( 54 / 8 = 6.75 \). - Median: Arrange the numbers in order: \( 3, 4, 6, 7, 7, 7, 8, 12 \). With 8 numbers, the median will be the average of the 4th and 5th values: \( (7 + 7) / 2 = 7 \). - Mode: The mode is the most frequently occurring number, which is \( 7 \). For the second data set: \( 10.5, 12.5, 12.5, 14.5, 19.5, 16.5, 12.5, 14.5, 11.5 \) - Mean: Add all the numbers together \( 10.5 + 12.5 + 12.5 + 14.5 + 19.5 + 16.5 + 12.5 + 14.5 + 11.5 = 130.5 \). Then divide by the number of values (9): \( 130.5 / 9 \approx 14.56 \). - Median: Arrange the numbers in order: \( 10.5, 11.5, 12.5, 12.5, 12.5, 14.5, 14.5, 16.5, 19.5 \). The middle value (5th) is \( 12.5 \). - Mode: The mode, representing the most common value, is \( 12.5 \) since it appears most frequently. So, the results are: **For data set a:** Mean: 6.75 Median: 7 Mode: 7 **For data set b:** Mean: ≈ 14.56 Median: 12.5 Mode: 12.5

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad