Pregunta
upstudy study bank question image url

Vrite the equation in vertex form for the parabola with focus \( (0,10) \) and directrix \( y=-6 \). implify any fractions. Submit

Ask by Gray Huang. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The equation of the parabola in vertex form is \( y = \frac{1}{32}x^2 + 2 \).

Solución

To find the equation of the parabola with focus \((0, 10)\) and directrix \(y = -6\), follow these steps: 1. **Determine the Vertex:** - The vertex lies midway between the focus and the directrix. - The distance between \(y = -6\) and \(y = 10\) is \(16\). - Therefore, the y-coordinate of the vertex is \((-6 + 10)/2 = 2\). - So, the vertex is at \((0, 2)\). 2. **Find the Value of \(p\):** - \(p\) is the distance from the vertex to the focus. - Here, \(p = 10 - 2 = 8\). 3. **Write the Vertex Form Equation:** - For a vertically oriented parabola (opening upwards), the vertex form is: \[ y = \frac{1}{4p}(x - h)^2 + k \] - Substituting \(h = 0\), \(k = 2\), and \(p = 8\): \[ y = \frac{1}{32}x^2 + 2 \] **Final Equation in Vertex Form:** \[ y = \frac{1}{32}x^2 + 2 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the vertex form of the parabola, we first need to determine the vertex. The vertex is located halfway between the focus and the directrix. So, we calculate the vertex's y-coordinate by averaging the y-coordinates of the focus and the directrix: \[ \text{Vertex } y = \frac{10 + (-6)}{2} = \frac{4}{2} = 2 \] Thus, the vertex is \( (0, 2) \). Now, the distance \( p \) from the vertex to the focus (or to the directrix) is: \[ p = 10 - 2 = 8 \] Since the focus is above the vertex, the parabola opens upwards, giving us the vertex form: \[ y = a(x-h)^2 + k \] where \( (h, k) \) is the vertex \( (0, 2) \), and \( a = \frac{1}{4p} = \frac{1}{4 \times 8} = \frac{1}{32} \). Putting all this together, the equation of the parabola in vertex form is: \[ y = \frac{1}{32}(x - 0)^2 + 2 \] or simply: \[ y = \frac{1}{32}x^2 + 2 \] Now, let's dive into some fun additional information! Did you know that parabolas are not just confined to mathematics but pop up in real life too? From the path of thrown objects to satellite dishes that collect signals, their unique shape plays a crucial role in optics and engineering. Ever taken a ride on a roller coaster? The curves often resemble parabolic shapes for a smoother ride! When working with parabolas, a common mistake is neglecting to check whether you’ve placed the focus above or below the directrix. This changes the 'a' value's sign! Remember, if the focus is above, it's an upward-opening parabola; if below, it opens downward. This little detail can save you from some serious headaches in graphing!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad