Pregunta
upstudy study bank question image url

1 Use the quadratic formula to find the real solutions, if any, of the equation. \[ x^{2}+2 x-6=0 \] Select the correct choice below and fill in any answer boxes within your choice. A. The solution set is \( \{\square \). (Simplify your answer. Type an exact answer, using radicals as needed. Use a comma to separate answers as needed.) B. There are no real solutions.

Ask by Bolton Bartlett. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solution set is \( \{-1 - \sqrt{7},\ -1 + \sqrt{7}\} \).

Solución

To solve the quadratic equation using the **quadratic formula**, we'll follow these steps: **Given Equation:** \[ x^{2} + 2x - 6 = 0 \] **Quadratic Formula:** \[ x = \frac{ -b \pm \sqrt{b^{2} - 4ac} }{2a} \] **Identify the coefficients:** - \( a = 1 \) - \( b = 2 \) - \( c = -6 \) **Calculate the discriminant (\( \Delta \)):** \[ \Delta = b^{2} - 4ac = (2)^{2} - 4(1)(-6) = 4 + 24 = 28 \] Since the discriminant is positive (\( \Delta = 28 > 0 \)), there are **two real solutions**. **Apply the quadratic formula:** \[ x = \frac{ -2 \pm \sqrt{28} }{2} \] **Simplify the square root:** \[ \sqrt{28} = \sqrt{4 \times 7} = 2\sqrt{7} \] **Substitute back into the formula:** \[ x = \frac{ -2 \pm 2\sqrt{7} }{2} \] \[ x = -1 \pm \sqrt{7} \] **Solution Set:** \[ \left\{ -1 - \sqrt{7},\ -1 + \sqrt{7} \right\} \] **Conclusion:** **A.** The solution set is \( \{\, -1 - \sqrt{7},\ -1 + \sqrt{7} \} \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the equation \( x^{2}+2 x-6=0 \) using the quadratic formula, we identify \( a = 1 \), \( b = 2 \), and \( c = -6 \). The quadratic formula is given by: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Calculating the discriminant, \( b^2 - 4ac \): \[ 2^2 - 4(1)(-6) = 4 + 24 = 28 \] Now substituting back into the formula: \[ x = \frac{-2 \pm \sqrt{28}}{2(1)} = \frac{-2 \pm 2\sqrt{7}}{2} = -1 \pm \sqrt{7} \] Thus, the solution set is: A. The solution set is \(\{-1 + \sqrt{7}, -1 - \sqrt{7}\}\). --- Quadratic equations have played a crucial role in the development of algebra from ancient times, with mathematicians such as Babylonian scholars using geometric methods to solve them over 4000 years ago! The quadratic formula itself was refined over centuries, leading to a robust tool we still use extensively in education today. Ever struggled with sign errors? A common mistake when using the quadratic formula is miscalculating the discriminant or mixing up the plus and minus signs. Always double-check your arithmetic and remember that the discriminant can tell you not only about the number of solutions but also their nature (real or complex), providing insight into the equation's behavior. Happy solving!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad