Pregunta
upstudy study bank question image url

The quadratic formula defines the points \( (x ; 0) \) on the parabolic graph, where the parabola \( y=a x^{2}+b x+c \) crosses the \( x \)-axis and it can be separated into two terms, \( x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \) \( x=-\frac{b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a} \) The first term \( -\frac{b}{2 a} \) describes the (i) the line \( x=-\frac{b}{2 a} \). The second term \( \frac{\sqrt{b^{2}-4 a c}}{2 a} \), gives the (ii) If the parabola's vertex is on the \( x \)-axis, then the corresponding equation has a single repeated root on the line of symmetry, and this distance term is zero, algebraically, the (iii)

Ask by George Moran. in South Africa
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

- (i) line of symmetry - (ii) distance from the vertex to the \( x \)-intercepts - (iii) discriminant is zero

Solución

Let's break down the information provided in the problem step by step. 1. **Understanding the Quadratic Formula**: The quadratic formula is given as: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] This formula provides the \( x \)-coordinates of the points where the parabola \( y = ax^2 + bx + c \) intersects the \( x \)-axis. 2. **Separation into Two Terms**: The formula can be separated into two parts: - The first term: \[ x = -\frac{b}{2a} \] This term represents the line of symmetry of the parabola, which is the vertical line that passes through the vertex of the parabola. - The second term: \[ x = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a} \] The second term, \( \frac{\sqrt{b^2 - 4ac}}{2a} \), represents the distance from the vertex to the points where the parabola intersects the \( x \)-axis. 3. **Vertex on the \( x \)-axis**: If the vertex of the parabola is on the \( x \)-axis, it means that the parabola touches the \( x \)-axis at that point, indicating a single repeated root. This occurs when the discriminant \( b^2 - 4ac \) is equal to zero. - Algebraically, this means: \[ b^2 - 4ac = 0 \] Therefore, the distance term \( \frac{\sqrt{b^2 - 4ac}}{2a} \) becomes zero, leading to a single solution for \( x \): \[ x = -\frac{b}{2a} \] 4. **Filling in the Blanks**: - (i) The line \( x = -\frac{b}{2a} \) describes the **line of symmetry** of the parabola. - (ii) The second term \( \frac{\sqrt{b^2 - 4ac}}{2a} \) gives the **distance from the vertex to the \( x \)-intercepts**. - (iii) The algebraic condition for the vertex being on the \( x \)-axis is that the **discriminant is zero**. In summary: - (i) line of symmetry - (ii) distance from the vertex to the \( x \)-intercepts - (iii) discriminant is zero

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The quadratic formula has a fascinating historical background! It dates back to ancient civilizations, with the earliest known solutions popping up in Babylon around 2000 BC. They had geometrical methods for solving quadratic equations, although they didn't have the formal symbolic notation we use today. It wasn't until the Middle Ages, particularly through the work of Persian and Arab mathematicians, that the quadratic formula was expressed more algebraically, paving the way for modern mathematics. In the real world, quadratic equations are everywhere—from physics to finance! For example, when you throw a ball, its trajectory can be modeled by a quadratic function. The height of the ball over time represents a parabolic path, and you can determine where the ball will hit the ground (the x-axis) using the quadratic formula. This practical application helps engineers design everything from roller coasters to projectile motion scenarios in video games!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad