Pregunta
upstudy study bank question image url

4. \( \frac{1}{3} \) of Julie's money was equal to \( \frac{3}{5} \) of Nancy's money. After Julie gave Nancy \( \$ 42 \), both of them would have the same amount of money. How much money did Nancy have at first?

Ask by Black Ingram. in Singapore
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Nancy originally had \$105.

Solución

Let's solve the problem step by step. ### Let: - \( J \) = Julie's initial amount of money - \( N \) = Nancy's initial amount of money ### Given: 1. \( \frac{1}{3} \) of Julie's money is equal to \( \frac{3}{5} \) of Nancy's money: \[ \frac{1}{3}J = \frac{3}{5}N \] 2. After Julie gives Nancy \$42, both have the same amount: \[ J - 42 = N + 42 \] ### Step 1: Express \( J \) in terms of \( N \) From the second equation: \[ J = N + 84 \] ### Step 2: Substitute \( J \) into the first equation \[ \frac{1}{3}(N + 84) = \frac{3}{5}N \] ### Step 3: Eliminate the fractions by multiplying both sides by 15 (the least common multiple of 3 and 5): \[ 15 \times \frac{1}{3}(N + 84) = 15 \times \frac{3}{5}N \] \[ 5(N + 84) = 9N \] ### Step 4: Solve for \( N \) \[ 5N + 420 = 9N \] \[ 420 = 4N \] \[ N = 105 \] **Nancy originally had \$105.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

Let's denote Julie's initial amount of money as \( J \) and Nancy's initial amount as \( N \). From the problem, we can establish two equations. The first comes from the statement about their money: \[ \frac{1}{3} J = \frac{3}{5} N \] To eliminate the fractions, we can multiply through by 15 (the least common multiple of the denominators 3 and 5): \[ 5J = 9N \quad \text{(Equation 1)} \] Next, we derive the second equation from the information about the \( \$ 42 \) transaction. After Julie gives Nancy \( \$ 42 \), both have the same amount of money: \[ J - 42 = N + 42 \quad \text{(Equation 2)} \] Rearranging Equation 2 gives: \[ J - N = 84 \quad \text{(Equation 3)} \] Now we have a system of equations with Equation 1 and Equation 3. We can express \( J \) from Equation 3: \[ J = N + 84 \] Substituting this expression for \( J \) into Equation 1: \[ 5(N + 84) = 9N \] Distributing the 5: \[ 5N + 420 = 9N \] Now, we can isolate \( N \): \[ 420 = 9N - 5N \\ 420 = 4N \\ N = \frac{420}{4} = 105 \] Thus, Nancy's initial amount of money was \( \boxed{105} \). To verify, we can calculate Julie's initial amount using Equation 3: \[ J = N + 84 = 105 + 84 = 189 \] Now, checking the equations: From the first equation: \[ \frac{1}{3} \times 189 = 63 \quad \text{and} \quad \frac{3}{5} \times 105 = 63 \] Both sides are equal, confirming our first equation. Then with the transaction of \( \$ 42 \): After giving away \( \$ 42 \): - Julie: \( 189 - 42 = 147 \) - Nancy: \( 105 + 42 = 147 \) They both have \( \$147 \), thus confirming our solution!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad