Pregunta
19. \( \left(81^{8}\right)^{\frac{1}{4}} \)
Ask by Gardner Sandoval. in the United States
Jan 29,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( \left(81^{8}\right)^{\frac{1}{4}} = 6561 \)
Solución
To evaluate the expression \( \left(81^{8}\right)^{\frac{1}{4}} \), we can use the properties of exponents. Here's a step-by-step solution:
1. **Understand the Expression:**
The expression is \( \left(81^{8}\right)^{\frac{1}{4}} \).
2. **Apply the Power of a Power Rule:**
The power of a power rule states that \( (a^{m})^{n} = a^{m \times n} \).
Applying this rule:
\[
\left(81^{8}\right)^{\frac{1}{4}} = 81^{8 \times \frac{1}{4}}
\]
3. **Multiply the Exponents:**
\[
8 \times \frac{1}{4} = 2
\]
So,
\[
81^{8 \times \frac{1}{4}} = 81^{2}
\]
4. **Calculate \( 81^{2} \):**
\[
81^{2} = 81 \times 81 = 6561
\]
5. **Final Answer:**
\[
\left(81^{8}\right)^{\frac{1}{4}} = 6561
\]
**Therefore, \( \left(81^{8}\right)^{\frac{1}{4}} = 6561 \).**
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To simplify \( \left(81^{8}\right)^{\frac{1}{4}} \), you can use the properties of exponents. First, remember that \( 81 \) can be rewritten as \( 3^{4} \). Therefore, we have: \[ 81^{8} = (3^{4})^{8} = 3^{4 \cdot 8} = 3^{32}. \] Now substitute this back into the original expression: \[ \left(81^{8}\right)^{\frac{1}{4}} = \left(3^{32}\right)^{\frac{1}{4}} = 3^{32 \cdot \frac{1}{4}} = 3^{8}. \] Thus, the simplified result is: \[ 3^{8} = 6561. \] So, the final answer is \( 6561 \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium