Simplify. \[ \left(5 b^{3} a^{4}\right)^{3} \] Write your answer without parentheses.
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To simplify \(\left(5 b^{3} a^{4}\right)^{3}\), we apply the power of a product rule, which states that \((xy)^n = x^n y^n\). First, we take each part: - The coefficient \(5\) raised to the power of \(3\) becomes \(5^3 = 125\). - For \(b^{3}\) raised to the power of \(3\), we multiply the exponents: \(b^{3 \cdot 3} = b^{9}\). - For \(a^{4}\) raised to the power of \(3\), we also multiply the exponents: \(a^{4 \cdot 3} = a^{12}\). Putting it together, we have: \[ \left(5 b^{3} a^{4}\right)^{3} = 125 b^{9} a^{12} \] Thus, the simplified expression is: \[ 125 b^{9} a^{12} \]