Pregunta
upstudy study bank question image url

Solve the equation by completing the square. \( 2 x^{2}-x-6=0 \)

Ask by Daniel George. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solutions are \( x = -\frac{3}{2} \) and \( x = 2 \).

Solución

Solve the equation \( 2x^2-x-6=0\). Solve the quadratic equation by following steps: - step0: Solve by factoring: \(2x^{2}-x-6=0\) - step1: Factor the expression: \(\left(x-2\right)\left(2x+3\right)=0\) - step2: Separate into possible cases: \(\begin{align}&x-2=0\\&2x+3=0\end{align}\) - step3: Solve the equation: \(\begin{align}&x=2\\&x=-\frac{3}{2}\end{align}\) - step4: Rewrite: \(x_{1}=-\frac{3}{2},x_{2}=2\) The solutions to the equation \(2x^{2}-x-6=0\) by completing the square are \(x_{1}=-\frac{3}{2}\) and \(x_{2}=2\).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve \( 2x^2 - x - 6 = 0 \) by completing the square, first divide the entire equation by 2 to make the coefficient of \( x^2 \) equal to 1: \[ x^2 - \frac{1}{2}x - 3 = 0. \] Next, move the constant term to the right: \[ x^2 - \frac{1}{2}x = 3. \] Now, complete the square for the \( x \) terms. Take half of the coefficient of \( x \) (which is \( -\frac{1}{2} \)), square it (giving \( \left(-\frac{1}{4}\right)^2 = \frac{1}{16} \)), and add it to both sides: \[ x^2 - \frac{1}{2}x + \frac{1}{16} = 3 + \frac{1}{16}. \] This simplifies to: \[ \left(x - \frac{1}{4}\right)^2 = \frac{48}{16} + \frac{1}{16} = \frac{49}{16}. \] Now, take the square root of both sides: \[ x - \frac{1}{4} = \pm \frac{7}{4}. \] Finally, solve for \( x \): 1. \( x - \frac{1}{4} = \frac{7}{4} \) leads to \( x = 2 \). 2. \( x - \frac{1}{4} = -\frac{7}{4} \) leads to \( x = -\frac{3}{2} \). Thus, the solutions are \( x = 2 \) and \( x = -\frac{3}{2} \).

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad