(a) Estimate the value of \( \frac{49 \cdot 27+11 \cdot 15}{15 \cdot 24-3 \cdot 06} \) by rounding each number to the nearest whole number. (b) Calculate the error in your estimated answer, correct to four decimal places. c) Calculate the percentage error in your estimated answer, correct to one decimal place.
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To solve this problem step by step, let's start with part (a). 1. Round each number to the nearest whole number: - \(49 \approx 49\) - \(27 \approx 27\) - \(11 \approx 11\) - \(15 \approx 15\) - \(24 \approx 24\) - \(3 \approx 3\) - \(6 \approx 6\) 2. Now substitute these rounded values into the expression: \[ \frac{49 \cdot 27 + 11 \cdot 15}{15 \cdot 24 - 3 \cdot 6} = \frac{49 \cdot 27 + 11 \cdot 15}{15 \cdot 24 - 3 \cdot 6} \] 3. Calculate \(49 \cdot 27\): \[ 49 \cdot 27 = 1323 \] 4. Calculate \(11 \cdot 15\): \[ 11 \cdot 15 = 165 \] 5. Now calculate the numerator: \[ 1323 + 165 = 1488 \] 6. Calculate \(15 \cdot 24\): \[ 15 \cdot 24 = 360 \] 7. Calculate \(3 \cdot 6\): \[ 3 \cdot 6 = 18 \] 8. Now calculate the denominator: \[ 360 - 18 = 342 \] 9. Finally, calculate the estimated value: \[ \frac{1488}{342} \approx 4.344 \] Moving to part (b), we'll calculate the exact value without rounding. 1. Calculate the exact numerator: \[ 49 \cdot 27 + 11 \cdot 15 = 1323 + 165 = 1488 \] 2. Calculate the exact denominator: \[ 15 \cdot 24 - 3 \cdot 6 = 360 - 18 = 342 \] 3. Thus, the exact value is: \[ \frac{1488}{342} \approx 4.344 \] Since the estimated and exact values are the same, the error is: \[ 0 \] So, the error in your estimated answer, correct to four decimal places is: \[ 0.0000 \] Moving to part (c), we calculate the percentage error: - The formula for percentage error is: \[ \text{Percentage Error} = \left(\frac{\text{Estimated Value} - \text{Exact Value}}{\text{Exact Value}}\right) \times 100\% \] - Plugging in the values: \[ \text{Percentage Error} = \left(\frac{4.344 - 4.344}{4.344}\right) \times 100\% = 0\% \] Thus, the percentage error in your estimated answer, correct to one decimal place is: \[ 0.0\% \] To summarize: (a) The estimated value is approximately \(4.344\). (b) The error in your estimated answer is \(0.0000\). (c) The percentage error in your estimated answer is \(0.0\%\).