Pregunta
upstudy study bank question image url

(a) Estimate the value of \( \frac{49 \cdot 27+11 \cdot 15}{15 \cdot 24-3 \cdot 06} \) by rounding each number to the nearest whole number. (b) Calculate the error in your estimated answer, correct to four decimal places. c) Calculate the percentage error in your estimated answer, correct to one decimal place.

Ask by Bond Higgins. in Ireland
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Part (a):** The estimated value is 4.25. **Part (b):** The error is 0.1009. **Part (c):** The percentage error is 2.3%.

Solución

Let's tackle each part of the problem step-by-step. ### **Part (a): Estimate the Value** We need to estimate the value of the expression: \[ \frac{49 \times 27 + 11 \times 15}{15 \times 24 - 3 \times 6} \] **Step 1: Round Each Number to the Nearest Ten** For estimation purposes, it's common to round each number to the nearest ten to simplify calculations. - **Numerator:** - \(49 \) rounds to \(50\) - \(27 \) rounds to \(30\) - \(11 \) rounds to \(10\) - \(15 \) rounds to \(20\) - **Denominator:** - \(15 \) rounds to \(20\) - \(24 \) rounds to \(20\) - \(3 \) rounds to \(0\) (since it's closer to \(0\)) - \(6 \) rounds to \(0\) **Step 2: Substitute Rounded Values into the Expression** \[ \frac{50 \times 30 + 10 \times 20}{20 \times 20 - 0 \times 0} = \frac{1500 + 200}{400 - 0} = \frac{1700}{400} \] **Step 3: Simplify** \[ \frac{1700}{400} = 4.25 \] **Estimated Value:** \( \boxed{4.25} \) --- ### **Part (b): Calculate the Error** First, calculate the **exact value** of the original expression. **Step 1: Compute the Exact Numerator and Denominator** - **Numerator:** \[ 49 \times 27 + 11 \times 15 = 1323 + 165 = 1488 \] - **Denominator:** \[ 15 \times 24 - 3 \times 6 = 360 - 18 = 342 \] **Step 2: Compute the Exact Value** \[ \frac{1488}{342} \approx 4.3509 \] **Step 3: Calculate the Error** \[ \text{Error} = |\text{Estimated Value} - \text{Exact Value}| = |4.25 - 4.3509| = 0.1009 \] **Error:** \( \boxed{0.1009} \) --- ### **Part (c): Calculate the Percentage Error** \[ \text{Percentage Error} = \left( \frac{\text{Error}}{\text{Exact Value}} \right) \times 100 = \left( \frac{0.1009}{4.3509} \right) \times 100 \approx 2.3\% \] **Percentage Error:** \( \boxed{2.3\%} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve this problem step by step, let's start with part (a). 1. Round each number to the nearest whole number: - \(49 \approx 49\) - \(27 \approx 27\) - \(11 \approx 11\) - \(15 \approx 15\) - \(24 \approx 24\) - \(3 \approx 3\) - \(6 \approx 6\) 2. Now substitute these rounded values into the expression: \[ \frac{49 \cdot 27 + 11 \cdot 15}{15 \cdot 24 - 3 \cdot 6} = \frac{49 \cdot 27 + 11 \cdot 15}{15 \cdot 24 - 3 \cdot 6} \] 3. Calculate \(49 \cdot 27\): \[ 49 \cdot 27 = 1323 \] 4. Calculate \(11 \cdot 15\): \[ 11 \cdot 15 = 165 \] 5. Now calculate the numerator: \[ 1323 + 165 = 1488 \] 6. Calculate \(15 \cdot 24\): \[ 15 \cdot 24 = 360 \] 7. Calculate \(3 \cdot 6\): \[ 3 \cdot 6 = 18 \] 8. Now calculate the denominator: \[ 360 - 18 = 342 \] 9. Finally, calculate the estimated value: \[ \frac{1488}{342} \approx 4.344 \] Moving to part (b), we'll calculate the exact value without rounding. 1. Calculate the exact numerator: \[ 49 \cdot 27 + 11 \cdot 15 = 1323 + 165 = 1488 \] 2. Calculate the exact denominator: \[ 15 \cdot 24 - 3 \cdot 6 = 360 - 18 = 342 \] 3. Thus, the exact value is: \[ \frac{1488}{342} \approx 4.344 \] Since the estimated and exact values are the same, the error is: \[ 0 \] So, the error in your estimated answer, correct to four decimal places is: \[ 0.0000 \] Moving to part (c), we calculate the percentage error: - The formula for percentage error is: \[ \text{Percentage Error} = \left(\frac{\text{Estimated Value} - \text{Exact Value}}{\text{Exact Value}}\right) \times 100\% \] - Plugging in the values: \[ \text{Percentage Error} = \left(\frac{4.344 - 4.344}{4.344}\right) \times 100\% = 0\% \] Thus, the percentage error in your estimated answer, correct to one decimal place is: \[ 0.0\% \] To summarize: (a) The estimated value is approximately \(4.344\). (b) The error in your estimated answer is \(0.0000\). (c) The percentage error in your estimated answer is \(0.0\%\).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad