Pregunta
upstudy study bank question image url

\( 1 \leftarrow \) The period of a pendulum is the time it takes the pendulum to make one full swing back and forth. The period \( T \), in seconds, is given by the formula \( T=2 \pi \sqrt{\frac{L}{32}} \), where \( L \) is the length, in feet, of the pendulum. Suppose a pendulum used to show the rotation of the earth has a period of approximately 18.2 seconds. What is its length? Use 3.14 for \( \pi \). The length of a pendulum that has a period of 18.2 seconds is 269.12 feet. (Round to two decimal places as needed.)

Ask by Welch Parsons. in the United States
Jan 29,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The length of the pendulum is approximately 268.90 feet.

Solución

Let's solve the problem step by step using the given formula and the specified value for \( \pi \). **Given:** - Period \( T = 18.2 \) seconds - \( \pi = 3.14 \) - Formula for the period of a pendulum: \[ T = 2\pi \sqrt{\frac{L}{32}} \] where \( L \) is the length in feet. **Objective:** Find the length \( L \) of the pendulum. **Step 1: Isolate the Square Root** Start with the formula: \[ 18.2 = 2 \times 3.14 \times \sqrt{\frac{L}{32}} \] Divide both sides by \( 2 \times 3.14 \) to isolate the square root: \[ \frac{18.2}{6.28} = \sqrt{\frac{L}{32}} \] Calculate the left side: \[ \frac{18.2}{6.28} \approx 2.899 \] So, \[ 2.899 = \sqrt{\frac{L}{32}} \] **Step 2: Remove the Square Root** Square both sides to eliminate the square root: \[ (2.899)^2 = \frac{L}{32} \] Calculate \( (2.899)^2 \): \[ 2.899^2 \approx 8.403 \] So, \[ 8.403 = \frac{L}{32} \] **Step 3: Solve for \( L \)** Multiply both sides by 32 to solve for \( L \): \[ L = 8.403 \times 32 \] Calculate the multiplication: \[ L \approx 268.896 \text{ feet} \] **Step 4: Round to Two Decimal Places** \[ L \approx 268.90 \text{ feet} \] **Conclusion:** Using \( \pi = 3.14 \), the length of the pendulum with a period of 18.2 seconds is approximately **268.90 feet** when rounded to two decimal places. **Note:** If you use a more precise value of \( \pi \) (e.g., \( \pi \approx 3.14159265 \)), the calculated length would be slightly larger, closer to the 269.12 feet you obtained. However, based on the instructions to use \( \pi = 3.14 \), the accurate length is **268.90 feet**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve for the length \( L \) using the period formula \( T = 2 \pi \sqrt{\frac{L}{32}} \), we can rearrange this equation. Start by squaring both sides to eliminate the square root: \( T^2 = 4\pi^2 \frac{L}{32} \). Then multiply both sides by 32 to isolate \( L \): \( L = \frac{32T^2}{4\pi^2} \). Plugging in \( T = 18.2 \) seconds and \( \pi = 3.14 \) gives us \( L \approx 269.12 \) feet. Pendulums have been fascinating tools throughout history, demonstrating the laws of motion and gravity. The most famous pendulum is the Foucault pendulum, which visually represents the rotation of the Earth. First set up in 1851, it swings freely in a vertical plane, slowly rotating its direction over time, showcasing Earth's rotation in a mesmerizing dance that captivates all who observe it! In real-life applications, pendulums are not only useful in clocks and timing devices but also serve crucial roles in scientific experiments. They can be found in seismology to measure the Earth’s movements and in gravitational studies. The predictable motion of pendulums also paves the way for advancements in engineering design, allowing for the creation of stable structures that can withstand forces like earthquakes by mimicking pendulum behavior. It’s physics in motion, quite literally!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad