Pregunta
upstudy study bank question image url

(5) \( 2 x^{2}-7 x+5 \)

Ask by Young Park. in South Africa
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The quadratic expression \(2x^{2} - 7x + 5\) can be factored as \((2x - 5)(x - 1)\). Solving the equation \(2x^{2} - 7x + 5 = 0\) yields the solutions \(x = 1\) and \(x = \frac{5}{2}\).

Solución

It appears you have the quadratic expression: \[ 2x^{2} - 7x + 5 \] Assuming you'd like to **factor** this quadratic expression or **solve** the equation \(2x^{2} - 7x + 5 = 0\), here's how you can proceed: ### **1. Factoring the Quadratic Expression** To factor the quadratic expression \(2x^{2} - 7x + 5\), we look for two numbers that: - Multiply to \(2 \times 5 = 10\) (the product of the coefficient of \(x^{2}\) and the constant term). - Add up to \(-7\) (the coefficient of the \(x\) term). The numbers \(-2\) and \(-5\) satisfy these conditions because: - \((-2) \times (-5) = 10\) - \((-2) + (-5) = -7\) Using these numbers, we can rewrite the middle term and factor by grouping: \[ 2x^{2} - 2x - 5x + 5 \] Group the terms: \[ (2x^{2} - 2x) - (5x - 5) \] Factor out the common factors in each group: \[ 2x(x - 1) - 5(x - 1) \] Now, factor out the common binomial \((x - 1)\): \[ (2x - 5)(x - 1) \] So, the factored form of the quadratic expression is: \[ 2x^{2} - 7x + 5 = (2x - 5)(x - 1) \] ### **2. Solving the Quadratic Equation** If you're looking to solve the equation \(2x^{2} - 7x + 5 = 0\), you can use the factored form to find the solutions: \[ (2x - 5)(x - 1) = 0 \] Set each factor equal to zero and solve for \(x\): 1. **First Factor:** \[ 2x - 5 = 0 \\ 2x = 5 \\ x = \frac{5}{2} \] 2. **Second Factor:** \[ x - 1 = 0 \\ x = 1 \] **Solutions:** \[ x = 1 \quad \text{and} \quad x = \frac{5}{2} \] ### **Alternative Method: Quadratic Formula** If factoring is challenging, you can use the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} \] For the equation \(2x^{2} - 7x + 5 = 0\): - \(a = 2\) - \(b = -7\) - \(c = 5\) Plugging the values into the formula: \[ x = \frac{-(-7) \pm \sqrt{(-7)^{2} - 4 \times 2 \times 5}}{2 \times 2} \\ x = \frac{7 \pm \sqrt{49 - 40}}{4} \\ x = \frac{7 \pm \sqrt{9}}{4} \\ x = \frac{7 \pm 3}{4} \] This gives two solutions: 1. \[ x = \frac{7 + 3}{4} = \frac{10}{4} = \frac{5}{2} \] 2. \[ x = \frac{7 - 3}{4} = \frac{4}{4} = 1 \] **Thus, the solutions are \(x = 1\) and \(x = \frac{5}{2}\).**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Did you know that quadratic equations like \(2x^2 - 7x + 5\) have a fascinating history? They date back to ancient civilizations like the Babylonians, who discovered methods to solve them around 2000 BC! Interestingly, they used geometric methods long before algebra was formalized. Today, we have the quadratic formula, but back then, they relied on intuition and shapes. Now, when you're solving quadratics, it's easy to make a common mistake: overlooking the possibility of complex solutions. Remember, if the discriminant (the part of the quadratic formula under the square root) is negative, your solutions won't be real numbers—they'll be imaginary! So, stay sharp and double-check your discriminant calculations!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad