Pregunta
upstudy study bank question image url

9.2: Let's Solve Some Equations! 1. To solve the equation \( n^{2}-2 n=99 \), Tyler wrote out the following st Tyler's work. Write down what Tyler did in each step. \[ \begin{array}{ll}n^{2}-2 n=99 & \text { Original equation } \\ n^{2}-2 n-99=0 & \text { Step 1 } \\ (n-11)(n+9)=0 & \text { Step } 2 \\ n-11=0 \text { or } n+9=0 & \text { Step } 3 \\ n=11 \text { or } n=-9 & \text { Step } 4\end{array} \]

Ask by Davies Perkins. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Tyler solved the equation \( n^{2}-2 n=99 \) by first rearranging it to \( n^{2}-2 n-99=0 \), then factoring it into \( (n-11)(n+9)=0 \). He set each factor equal to zero, resulting in \( n=11 \) and \( n=-9 \).

Solución

Let's break down Tyler's work step by step, explaining what he did in each step of solving the equation \( n^{2}-2 n=99 \). 1. **Original equation**: \[ n^{2}-2 n=99 \] - Tyler starts with the original equation, which is a quadratic equation in the form of \( ax^2 + bx + c = 0 \). 2. **Step 1**: \[ n^{2}-2 n-99=0 \] - In this step, Tyler rearranges the equation to set it to zero. He subtracts 99 from both sides, resulting in the standard form of a quadratic equation. 3. **Step 2**: \[ (n-11)(n+9)=0 \] - Here, Tyler factors the quadratic equation. He finds two numbers that multiply to \(-99\) (the constant term) and add to \(-2\) (the coefficient of \(n\)). The factors are \(-11\) and \(9\), leading to the factored form. 4. **Step 3**: \[ n-11=0 \text{ or } n+9=0 \] - Tyler applies the zero product property, which states that if the product of two factors is zero, at least one of the factors must be zero. He sets each factor equal to zero. 5. **Step 4**: \[ n=11 \text{ or } n=-9 \] - Finally, Tyler solves each equation from Step 3. He finds the solutions for \(n\) by isolating \(n\) in each case, resulting in two possible solutions: \(n=11\) and \(n=-9\). In summary, Tyler systematically rearranged, factored, applied the zero product property, and solved for \(n\) to find the solutions to the original equation.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

In Step 2, Tyler factored the quadratic equation \( n^{2}-2 n-99=0 \) into two binomials. This is based on finding two numbers that multiply to \(-99\) (the constant term) and add up to \(-2\) (the coefficient of \(n\)). The numbers are \(-11\) and \(9\). In Step 3, Tyler applied the zero-product property, which states that if a product of two factors equals zero, then at least one of the factors must be zero. Thus, he set each factor, \(n-11\) and \(n+9\), equal to zero to solve for \(n\).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad