Pregunta
upstudy study bank question image url

At the age of 31 , to save for retirement, you decide to deposit \( \$ 90 \) at the end of each month in an IRA that pays 5.5\% compounded monthly. a. Determine how much you will have in the IRA when you retire at age 65. b. Find the interest. a. You will have approximately \$ \( \square \) in the IRA when you retire. (Do not round until the final answer. Then round to the nearest dollar as needed.) b. The interest is approximately \$ \( \square \) . (Use the answer from part a to find this answer. Round to the nearest dollar as needed.)

Ask by Peters Brooks. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

a. You will have approximately \$106,931 in the IRA when you retire. b. The interest is approximately \$70,211.

Solución

To determine the future value of your IRA and the interest earned by the time you retire at age 65, we'll follow these steps: ### **Given:** - **Current Age:** 31 - **Retirement Age:** 65 - **Monthly Deposit (\( PMT \)):** \$90 - **Annual Interest Rate:** 5.5% compounded monthly ### **Calculations:** 1. **Determine the Number of Periods (\( n \)):** \[ n = (65 - 31) \times 12 = 34 \times 12 = 408 \text{ months} \] 2. **Monthly Interest Rate (\( r \)):** \[ r = \frac{5.5\%}{12} = 0.458333\% = 0.0045833333 \text{ (as a decimal)} \] 3. **Future Value of an Ordinary Annuity (since deposits are made at the end of each month):** \[ FV = PMT \times \left( \frac{(1 + r)^n - 1}{r} \right) \] Plugging in the values: \[ FV = 90 \times \left( \frac{(1 + 0.0045833333)^{408} - 1}{0.0045833333} \right) \] 4. **Calculating \((1 + r)^n\):** \[ (1 + 0.0045833333)^{408} \approx 6.44555 \] 5. **Substituting back into the Future Value formula:** \[ FV = 90 \times \left( \frac{6.44555 - 1}{0.0045833333} \right) = 90 \times \left( \frac{5.44555}{0.0045833333} \right) \approx 90 \times 1,187.5625 \approx 106,930.8 \] 6. **Rounding to the Nearest Dollar:** \[ FV \approx \$106,931 \] 7. **Total Contributions:** \[ \text{Total Deposits} = 90 \times 408 = \$36,720 \] 8. **Interest Earned:** \[ \text{Interest} = FV - \text{Total Deposits} = 106,931 - 36,720 = \$70,211 \] ### **Final Answers:** a. You will have approximately **\$106,931** in the IRA when you retire. b. The interest is approximately **\$70,211**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find out how much you will have in the IRA when you retire at age 65, we can use the future value of an annuity formula: \[ FV = P \times \frac{(1 + r)^n - 1}{r} \] Where: - \( P = 90 \) (the monthly deposit) - \( r = \frac{0.055}{12} \) (monthly interest rate) - \( n = 34 \times 12 \) (total number of deposits, since you'll be depositing monthly for 34 years) Calculating \( r \): \[ r = \frac{0.055}{12} \approx 0.00458333 \] Calculating \( n \): \[ n = 34 \times 12 = 408 \] Now plug these values into the formula: \[ FV \approx 90 \times \frac{(1 + 0.00458333)^{408} - 1}{0.00458333} \] \[ FV \approx 90 \times \frac{(1.00458333)^{408} - 1}{0.00458333} \] \[ FV \approx 90 \times \frac{5.175353 - 1}{0.00458333} \] \[ FV \approx 90 \times \frac{4.175353}{0.00458333} \approx 90 \times 911.4061 \approx 81965.55 \] Thus, the total amount in the IRA when you retire at age 65 will be approximately \( \$81,966 \) (after rounding to the nearest dollar). To find the interest earned, subtract the total deposits from the future value: \[ \text{Total Deposits} = 90 \times 408 = 36720 \] \[ \text{Interest} = FV - \text{Total Deposits} = 81965.55 - 36720 \approx 45245.55 \] Therefore, the total interest earned is approximately \( \$45,246 \) (after rounding to the nearest dollar). So, a. You will have approximately \$81,966 in the IRA when you retire. b. The interest is approximately \$45,246.

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad