Pregunta
upstudy study bank question image url

8) Volume of cylinder: \( V=\pi r^{2} \cdot h \), for \( r \)

Ask by Logan Pollard. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To find the radius \( r \) of a cylinder, use the formula: \[ r = \sqrt{ \frac{V}{\pi h} } \] Where: - \( V \) is the volume, - \( h \) is the height. For example, if \( V = 50 \) and \( h = 10 \), then: \[ r \approx 1.261 \text{ units} \]

Solución

To solve for the radius \( r \) in the volume formula of a cylinder: \[ V = \pi r^{2} h \] follow these steps: ### Step 1: Start with the Volume Formula \[ V = \pi r^{2} h \] ### Step 2: Isolate \( r^{2} \) To isolate \( r^{2} \), divide both sides of the equation by \( \pi h \): \[ \frac{V}{\pi h} = r^{2} \] \[ r^{2} = \frac{V}{\pi h} \] ### Step 3: Solve for \( r \) Take the square root of both sides to solve for \( r \): \[ r = \sqrt{ \frac{V}{\pi h} } \] ### Final Formula \[ r = \sqrt{ \frac{V}{\pi h} } \] ### Example Calculation Suppose you have a cylinder with a volume \( V = 50 \) cubic units and a height \( h = 10 \) units. To find the radius \( r \): \[ r = \sqrt{ \frac{50}{\pi \times 10} } = \sqrt{ \frac{50}{31.4159} } \approx \sqrt{1.5915} \approx 1.261 \text{ units} \] So, the radius of the cylinder is approximately **1.261 units**. ### Summary To find the radius \( r \) of a cylinder when you know its volume \( V \) and height \( h \), use the formula: \[ r = \sqrt{ \frac{V}{\pi h} } \] This formula allows you to calculate the radius by rearranging the original volume equation to solve for \( r \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the radius \( r \) when you already have the volume \( V \) and height \( h \), you can rearrange the formula to isolate \( r \). Start by dividing both sides by \( \pi h \): \( r^{2} = \frac{V}{\pi h} \). Then, take the square root of both sides, which gives you \( r = \sqrt{\frac{V}{\pi h}} \). Voilà! You’ve got your radius without breaking a sweat! Now, think about the real-world applications of this formula! Understanding the volume of a cylinder is crucial in industries like manufacturing and shipping, where they need to calculate the capacity of tanks or pipes. Whether you’re designing a soda can or a storage tank, knowing how to manipulate this formula helps ensure you have the right dimensions in mind to hold just the right amount!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad