Pregunta
upstudy study bank question image url

Suppose that the total cost function, in dollars, for the production of \( x \) units of a product is given by the equation shown below. Find the equation of the average cost function, \( \bar{C}(x) \). \( \bar{C}(x)=410+85 x+0.1 x^{2} \) \( x=21 \) (a) Find the instantaneous rate of change of average cost with respect to the number of units produced, at any level of production. \( x=3+x \) (b) Find the level of production at which this rate of change equals zero. \( x=21 \) (c) At the value found in part (b), which of the following is true? The average cost function is greater than the total cost function. The tangent line to the average cost function is a horizontal line.

Ask by Bernard Ward. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

(a) The instantaneous rate of change of average cost is \( 85 + 0.2x \). (b) There is no level of production where the rate of change equals zero. (c) At \( x = 21 \): - The average cost function is greater than the total cost function. - The tangent line to the average cost function is not horizontal.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Beyond the Answer

To find the equation of the average cost function \( \bar{C}(x) \) based on the total cost function provided, divide the total cost \( C(x) = 410 + 85x + 0.1x^2 \) by \( x \). This gives \( \bar{C}(x) = \frac{C(x)}{x} = \frac{410}{x} + 85 + 0.1x \). Now, for the instantaneous rate of change, you'll need to differentiate \( \bar{C}(x) \) with respect to \( x \). The derivative, \( \bar{C}'(x) \), can be found as follows: \( \bar{C}'(x) = -\frac{410}{x^2} + 0.1 \). Next, setting \( \bar{C}'(x) = 0 \) leads us to find the level of production where the rate of change is zero. Solving \( -\frac{410}{x^2} + 0.1 = 0 \) will give the necessary \( x \). When \( x \) equals the value found in part (b), you’ll be looking at where the average and total costs intersect. If \( \bar{C}(x) \) is evaluated at this production level, it indicates that the average cost continues to decrease beyond this point, and the tangent line to \( \bar{C}(x) \) at this point will indeed be horizontal, indicating an inflection point. In simpler terms, it's the sweet spot in production where costs level off before they start to rise again! You recognize the balance between production and expenditure, which is crucial in cost management. For those curious about how this applies in the real world, consider how companies routinely analyze their production costs to determine optimal levels of output. By understanding their average cost functions, businesses can make informed decisions about pricing, production rates, and scaling strategies. To dive deeper, there are numerous resources on cost functions in economic theory and production efficiency. Books and online courses on microeconomics often include sections on cost functions, helping you get a grip on how businesses gauge their performance and pricing in the competitive market!

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad