Pregunta
upstudy study bank question image url

pearson.com/Student/PlayerHomework.aspx?homeworkld=689484221\&questionld=11\&flushed=false\&cld=8129566\&\¢erwin... 1901 Eric Walden 02/03/25 6:20 PM Question 47, 2.3.43 Part 4 of 7 HW Score: 32.44\%, 36.33 of HW \( 2 B \) 112 points Points: 0 of 2 Save Use the given function to complete parts (a) through (e) below. \[ f(x)=x^{4}-9 x^{2} \] B. The graph of \( f(x) \) rises left and rises right. C. The graph of \( f(x) \) falls left and falls right. D. The graph of \( f(x) \) falls left and rises right. b) Find the \( x \)-intercepts. \[ x=0,3,-3 \] (Type an integer or a decimal. Use a comma to separate answers as needed.) At which zeros does the graph of the function cross the \( x \)-axis? Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. \( x=-3,3 \) (Type an integer or a decimal. Use a comma to separate answers as needed.) B. There are no \( x \)-intercepts at which the graph crosses the \( x \)-axis. At which zeros does the graph of the function touch the x-axis and turn around? Select the correct choice below and, if necessary, fill in the answer box to complete your choice. 48 A. \( x= \) \( \square \) (Type an integer or a decimal. Use a comma to separate answers as needed.) 49 B. There are no \( x \)-intercepts at which the graph touches the \( x \)-axis and turns around.

Ask by Daniels Chen. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The function \( f(x) = x^4 - 9x^2 \) has \( x \)-intercepts at \( x = -3, 0, 3 \). The graph crosses the \( x \)-axis at \( x = -3 \) and \( x = 3 \), and touches and turns around at \( x = 0 \).

Solución

Let's analyze the function \( f(x) = x^4 - 9x^2 \) to determine its \( x \)-intercepts and understand the behavior of the graph at those points. ### **1. Finding the \( x \)-Intercepts** To find the \( x \)-intercepts, set \( f(x) = 0 \): \[ x^4 - 9x^2 = 0 \] Factor the equation: \[ x^2(x^2 - 9) = 0 \\ x^2(x - 3)(x + 3) = 0 \] So, the solutions are: \[ x = 0 \quad (\text{with multiplicity } 2) \\ x = 3 \\ x = -3 \] **\( x \)-Intercepts:** \[ x = -3, \quad x = 0, \quad x = 3 \] ### **2. Behavior of the Graph at the \( x \)-Intercepts** - **Multiplicity of Roots:** - **\( x = 0 \):** This root has a multiplicity of **2** (even), which means the graph **touches** the \( x \)-axis at this point and **turns around**. - **\( x = 3 \) and \( x = -3 \):** These roots have a multiplicity of **1** (odd), which means the graph **crosses** the \( x \)-axis** at these points. ### **3. Answering the Specific Questions** #### **a) At which zeros does the graph of the function cross the \( x \)-axis?** **Correct Choice:** **A. \( x = -3, 3 \)** - **Explanation:** At \( x = -3 \) and \( x = 3 \), the graph crosses the \( x \)-axis because these roots have an odd multiplicity. #### **b) At which zeros does the graph of the function touch the \( x \)-axis and turn around?** **Correct Choice:** **A. \( x = 0 \)** - **Explanation:** At \( x = 0 \), the graph touches the \( x \)-axis and turns around because this root has an even multiplicity. ### **Summary** - **\( x \)-Intercepts:** \( x = -3, 0, 3 \) - **Crosses the \( x \)-axis at:** \( x = -3 \) and \( x = 3 \) - **Touches and turns around at:** \( x = 0 \) If you have any further questions or need additional explanations, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

The function \( f(x) = x^{4} - 9x^{2} \) is a polynomial that represents a classic example of a quartic function. The graph has the distinctive "U" shape associated with even-degree polynomials. To find the \( x \)-intercepts, we factor the function as \( f(x) = x^2(x^2 - 9) = x^2(x - 3)(x + 3) \), revealing intercepts at \( x = 0, 3, -3 \). The graph crosses the x-axis at \( x = -3 \) and \( x = 3 \), while it touches the x-axis at \( x = 0 \) before turning back. When dealing with intercepts, a common error is confusing when a graph touches vs. crosses the x-axis. Remember, if the multiplicity of a zero is odd (like at \( x = -3 \) and \( x = 3 \), both with multiplicity 1), the graph crosses the axis. If the multiplicity is even (like at \( x = 0 \), with multiplicity 2), it touches and turns around. Check your work to ensure clarity on these points!

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad