Pregunta
The tangent to the curve
at a certain point is parallel to the line
.
Find its equation and where it cuts the
-axis.
olution:
Find its equation and where it cuts the
olution:
Ask by Fleming Frazier. in Nigeria
Dec 31,2024
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The tangent line to the curve
that is parallel to
is
. This tangent intersects the
-axis at the point
.
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Como
Bonus Knowledge
To find the point where the tangent to the curve
is parallel to the line
, we start by finding the slope of the line
, which is
.
Next, we calculate the derivative of the curve:
We set the derivative equal to the slope of the line:
Solving for
:
Now, we find the corresponding
-value by plugging
back into the original equation:
Thus, the point of tangency is
.
To find the equation of the tangent line at this point, we use the point-slope formula:
where
,
:
Now, to find where this tangent line cuts the
-axis, we set
:
Thus, the equation of the tangent line is
and it cuts the
-axis at
.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium